Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3521-3529.doi: 10.19799/j.cnki.2095-4239.2025.0067
• Energy Storage System and Engineering • Previous Articles Next Articles
Received:
2025-01-18
Revised:
2025-02-05
Online:
2025-09-28
Published:
2025-09-05
Contact:
Ling LI
E-mail:yyanine@163.com;liling@usst.edu.cn
CLC Number:
Xiuwen TAN, Ling LI. Study on the thermal runaway characteristics of lithium-ion batteries and their thermal management under local overheating conditions[J]. Energy Storage Science and Technology, 2025, 14(9): 3521-3529.
Table 2
Chemical parameters of TR model[16, 20]"
参数 | 描述 | 值 |
---|---|---|
Asei | 频率因子/(1/s) | 1.667×1015 |
Ane | 2.5×1013 | |
Ape | 2×108 | |
Ae | 5.14×1025 | |
Ea,sei | 反应活化能/(J/mol) | 1.3508×105 |
Ea,ne | 1.3508×105 | |
Ea,pe | 1.03×105 | |
Ea,e | 2.74×105 | |
Hsei | 反应热/(J/kg) | 2.57×105 |
Hne | 1.714×106 | |
Hpe | 1.947×105 | |
He | 6.2×105 | |
Csei,0 | 无量纲化参数初始值(1) | 0.15 |
Cne,0 | 0.75 | |
α0 | 0.04 | |
Ce,0 | 1 | |
nsei | 反应级数(1) | 1 |
nne | 1 | |
npe,1 | 1 | |
npe,2 | 1 | |
ne | 1 | |
tsei,0 | SEI膜初始厚度(1) | 0.033 |
Wsei | 材料含量/(kg/m3) | 406.9 |
Wne | 406.9 | |
Wpe | 610.4 | |
We | 1438 |
[1] | 李致远, 鲁锐华, 余庆华, 等. 动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(1): 139-150. DOI: 10.19562/j.chinasae. qcgc.2024.01.015. |
LI Z Y, LU R H, YU Q H, et al. Research and analysis of thermal runaway characteristics and prevention and control technology of power battery[J]. Automotive Engineering, 2024, 46(1): 139-150. DOI: 10.19562/j.chinasae.qcgc.2024.01.015. | |
[2] | LIN J Y, LIU X H, LI S, et al. A review on recent progress, challenges and perspective of battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120834. DOI: 10.1016/j.ijheatmasstransfer.2020.120834. |
[3] | 杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239-254. |
YANG X L, YUAN S S, YANG W J, et al. Research progress on energy density of Li-ion batteries for EVs[J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254. | |
[4] | 陈国贺, 吕培召, 李孟涵, 等. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482. DOI: 10.19799/j.cnki.2095-4239.2024.0091. |
CHEN G H, LYU P Z, LI M H, et al. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies[J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. DOI: 10.19799/j.cnki.2095-4239.2024. 0091. | |
[5] | 张大禹, 王震坡, 刘鹏, 等. 新能源汽车动力电池衰退机制与健康状态估计研究概述[J]. 机械工程学报, 2024, 60(22): 241-256. |
ZHANG D Y, WANG Z P, LIU P, et al. Overview of research on degradation mechanism and state of health estimation for traction battery in new energy vehicles[J]. Journal of Mechanical Engineering, 2024, 60(22): 241-256. | |
[6] | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013. |
[7] | 吉鹏霄, 郭丽娜, 陶海军. 热管理策略对电池储能系统性能影响综述[J]. 电池, 2025, 55(1): 178-185. |
JI P X, GUO L N, TAO H J. Summarize of effect of thermal management strategy on the performance of battery energy storage system[J]. Dianchi(Battery Bimonthly), 2025, 55(1): 178-185. | |
[8] | 宋爽, 李福, 唐西胜. 锂离子电池安全状态评估研究进展[J]. 储能科学与技术, 2023, 12(11): 3545-3555. DOI: 10.19799/j.cnki.2095-4239.2023.0512. |
SONG S, LI F, TANG X S. Research progress on the safety-state assessment of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3545-3555. DOI: 10.19799/j.cnki. 2095-4239.2023.0512. | |
[9] | 王芳, 王峥, 林春景, 等. 新能源汽车动力电池安全失效潜在原因分析[J]. 储能科学与技术, 2022, 11(5): 1411-1418. DOI: 10.19799/j.cnki.2095-4239.2021.0592. |
WANG F, WANG Z, LIN C J, et al. Analysis on potential causes of safety failure of new energy vehicles[J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. DOI: 10.19799/j.cnki. 2095-4239.2021.0592. | |
[10] | 朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239.2021.0369. |
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239.2021.0369. | |
[11] | HUANG Z H, YU Y, DUAN Q L, et al. Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery[J]. Applied Energy, 2022, 325: 119778. DOI: 10.1016/j.apenergy.2022.119778. |
[12] | JIN C Y, SUN Y D, WANG H B, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling[J]. Applied Energy, 2022, 312: 118760. DOI: 10.1016/j.apenergy. 2022.118760. |
[13] | MA M N, DUAN Q L, ZHAO C P, et al. Faulty characteristics and identification of increased connecting and internal resistance in parallel-connected lithium-ion battery pack for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10797-10808. DOI: 10.1109/TVT.2020.3012354. |
[14] | ZHENG Y J, HAN X B, LU L G, et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles[J]. Journal of Power Sources, 2013, 223: 136-146. DOI: 10.1016/j.jpowsour.2012.09.015. |
[15] | 刘邦金, 汪林威, 吴月月, 等. 锂离子电池热管理研究进展[J]. 化工学报, 2024, 75(12): 4413-4431. |
LIU B J, WANG L W, WU Y Y, et al. Advances in thermal management of lithium-ion batteries[J]. CIESC Journal, 2024, 75(12): 4413-4431. | |
[16] | PENG P, JIANG F M. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1008-1016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.088. |
[17] | MONIKA K, CHAKRABORTY C, ROY S, et al. An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles[J]. Journal of Energy Storage, 2021, 35: 102301. DOI: 10.1016/j.est.2021.102301. |
[18] | LYU P Z, LIU X J, LIU C Z, et al. The influence of tab overheating on thermal runaway propagation of pouch-type lithium-ion battery module with different tab connections[J]. International Journal of Heat and Mass Transfer, 2023, 211: 124279. DOI: 10.1016/j.ijheatmasstransfer.2023.124279. |
[19] | SCHAEFFLER S, JOSSEN A. In situ measurement and modeling of internal thermal runaway propagation within lithium-ion cells under local overheating conditions[J]. Journal of Power Sources, 2024, 614: 234968. DOI: 10.1016/j.jpowsour.2024.234968. |
[20] | ABADA S, PETIT M, LECOCQ A, et al. Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries[J]. Journal of Power Sources, 2018, 399: 264-273. DOI: 10.1016/j.jpowsour.2018.07.094. |
[21] | HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395. DOI: 10.1016/j.enconman.2014.10.015. |
[22] | SUN T, WANG L Y, REN D S, et al. Thermal runaway characteristics and modeling of LiFePO4 power battery for electric vehicles[J]. Automotive Innovation, 2023, 6(3): 414-424. DOI: 10.1007/s42154-023-00226-3. |
[23] | JIN C Y, SUN Y D, WANG H B, et al. Model and experiments to investigate thermal runaway characterization of lithium-ion batteries induced by external heating method[J]. Journal of Power Sources, 2021, 504: 230065. DOI: 10.1016/j.jpowsour. 2021.230065. |
[24] | LIN X W, ZHOU Z F, ZHU X G, et al. Non-uniform thermal characteristics investigation of three-dimensional electrochemical-thermal coupled model for pouch lithium-ion battery[J]. Journal of Cleaner Production, 2023, 417: 137912. DOI: 10.1016/j.jclepro. 2023.137912. |
[1] | Ye CHEN, Jin LI, Ruilani ZHAO, Shaoyu ZHANG, Yuxi CHU, Kang YANG, Xiaoxue LIAO, Bo JIANG, Ping ZHUO. Comparative experimental study on thermal runaway propagation of battery modules under different states of charge [J]. Energy Storage Science and Technology, 2025, 14(9): 3402-3413. |
[2] | Zheng CHEN, Jingyuan HU, Zhigang ZHAO, Jiangwei SHEN, Xuelei XIA, Fuxing WEI. Thermal characteristics study and optimization of air-cooling structures for dual-system battery packs [J]. Energy Storage Science and Technology, 2025, 14(9): 3463-3475. |
[3] | Wenyan CHEN, Ruilin HE, Jian CHANG, Yonghong DENG. Investigation of lithium storage mechanisms in liquid metal electrodes with different morphologies [J]. Energy Storage Science and Technology, 2025, 14(9): 3290-3300. |
[4] | Yan ZHAO, Hao LIU, Zonglin YI, Li LI, Lijing XIE, Fangyuan SU. Interfacial behavior of FEC and VC at graphite anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3249-3258. |
[5] | Jijin LIN, Qian LIU, Tao QU, Jingkun LI, Dongyong HUANG, Xiaoqing ZHU, Xing JU. Technical and economic analysis of liquid immersion cooling for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2025, 14(9): 3622-3635. |
[6] | Yuxi CHU, Chang MA, Hongguang CHEN, Shaoyu ZHANG, Ping ZHUO. Thermal runaway and gas production characteristics of a 180 Ah sodium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(9): 3611-3618. |
[7] | Chengshan XU, Han LI, Yan WANG, Languang LU, Xuning FENG, Minggao OUYANG. Research on fire propagation characteristics and energy transfer mechanisms during the triggering process in double-layer energy storage batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3552-3563. |
[8] | Mingxuan LIU, Wentao CHEN, Shaopeng SHEN, Shijie ZHANG, zhen WEI, Biao MA, Danhua LI, Shiqiang LIU, Fang WANG. Research on accelerated aging and safety characteristics of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2025, 14(9): 3530-3537. |
[9] | Juqiang FENG, Chengzhi ZHANG, Yuhang CHEN. A high-precision SOC and temperature joint estimation method based on rapid prototype modeling [J]. Energy Storage Science and Technology, 2025, 14(9): 3567-3580. |
[10] | Xiaoyu BAI, Yajing YAN, Zhirong ZHANG, Lingli KONG. Research on the performance of composite graphite lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3259-3268. |
[11] | Lei ZHANG. Operating status monitoring and evaluation of lithium-ion battery energy storage power stations [J]. Energy Storage Science and Technology, 2025, 14(9): 3538-3540. |
[12] | Xinyu BAO, Xiangdong KONG, Taolin LV, Zhicheng ZHU, Xuebing HAN, Xin LAI, Yuejiu ZHENG, Tao SUN. Battery internal resistance prediction and rapid sorting method based on production line big data [J]. Energy Storage Science and Technology, 2025, 14(9): 3541-3551. |
[13] | Bin YANG, Jun YANG, Lang XU, Haowei WEN, Dengfeng LIU, Dianbo RUAN. Ball-head indentation-induced safety evaluation of capacitive lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3090-3099. |
[14] | Chengshan XU, Ye SUN, Zhikai YANG, Mingqiang ZHAO, Yalun LI, Xuning FENG, Hewu WANG, Languang LU, Minggao OUYANG. Research progress on arc induced by thermal runaway in lithium-ion battery systems for energy storage [J]. Energy Storage Science and Technology, 2025, 14(8): 3037-3050. |
[15] | Pengju LI, Xiaoyu CHEN, Jia XIE, Jiani SHEN, Yijun HE. Research progress on state of power prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3028-3036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||