Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3599-3610.doi: 10.19799/j.cnki.2095-4239.2025.0033
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Wuzhe ZHANG1(), Zhiduan CAI2,3(
), Chengao WU1, Wei ZHENG1, Jiayang TONG2
Received:
2025-01-08
Revised:
2025-01-13
Online:
2025-09-28
Published:
2025-09-05
Contact:
Zhiduan CAI
E-mail:1035176174@qq.com;caizhiduan@zjhzu.edu.cn
CLC Number:
Wuzhe ZHANG, Zhiduan CAI, Chengao WU, Wei ZHENG, Jiayang TONG. State-of-health assessment of lithium batteries using variational mode decomposition and feature enhancement under capacity regeneration phenomena[J]. Energy Storage Science and Technology, 2025, 14(9): 3599-3610.
Table 5
SOH estimation results of different methods at varying estimation starting points, datasets, and battery models"
电池型号 | 估计起点 | 估计方法 | MAE/% | RMSE/% |
---|---|---|---|---|
B5 | T=40 | SVM VMD-SVM VMD-GAN-SVM | 6.11 6.05 4.06 | 6.83 6.74 4.42 |
T=50 | SVM VMD-SVM VMD-GAN-SVM | 5.01 6.42 3.27 | 5.54 7.43 3.98 | |
T=60 | SVM VMD-SVM VMD-GAN-SVM | 4.05 6.56 3.67 | 4.23 6.81 3.53 | |
B6 | T=40 | SVM VMD-SVM VMD-GAN-SVM | 11.29 4.03 3.11 | 12.60 4.33 3.47 |
T=50 | SVM VMD-SVM VMD-GAN-SVM | 12.82 4.16 1.56 | 13.36 4.36 1.97 | |
T=60 | SVM VMD-SVM VMD-GAN-SVM | 6.25 3.72 1.67 | 6.48 3.96 2.14 | |
B7 | T=40 | SVM VMD-SVM VMD-GAN-SVM | 4.69 3.41 2.60 | 5.61 4.00 3.58 |
T=50 | SVM VMD-SVM VMD-GAN-SVM | 3.11 2.73 2.32 | 3.42 2.98 2.57 | |
T=60 | SVM VMD-SVM VMD-GAN-SVM | 1.51 0.79 0.87 | 1.65 0.97 1.13 | |
CS2-35 | T=200 | SVM VMD-SVM VMD-GAN-SVM | 4.52 2.45 2.42 | 5.26 2.77 2.74 |
T=250 | SVM VMD-SVM VMD-GAN-SVM | 4.30 1.66 1.64 | 4.98 1.91 1.89 | |
T=300 | SVM VMD-SVM VMD-GAN-SVM | 2.34 1.29 1.28 | 2.67 1.57 1.56 | |
CS2-36 | T=200 | SVM VMD-SVM VMD-GAN-SVM | 7.44 3.81 3.77 | 8.80 4.48 4.46 |
T=250 | SVM VMD-SVM VMD-GAN-SVM | 6.42 3.38 3.23 | 7.27 3.84 3.68 | |
T=300 | SVM VMD-SVM VMD-GAN-SVM | 3.88 1.56 1.57 | 4.25 1.88 1.89 |
[1] | ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3(5): 447-456. DOI: 10.1038/s42256-021-00312-3. |
[2] | 胡晓亚, 郭永芳, 张若可. 锂离子电池健康状态估计方法研究综述[J]. 电源学报, 2022, 20(1): 126-133. DOI: 10.13234/j.issn.2095-2805.2022.1.126. |
HU X Y, GUO Y F, ZHANG R K. Review of state-of-health estimation methods for lithium-ion battery[J]. Journal of Power Supply, 2022, 20(1): 126-133. DOI: 10.13234/j.issn.2095-2805. 2022.1.126. | |
[3] | 王琛, 闵永军. 基于容量增量曲线与GWO-GPR的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3508-3518. DOI: 10.19 799/j.cnki.2095-4239.2023.0458. |
WANG C, MIN Y J. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR[J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518. DOI: 10.197 99/j.cnki.2095-4239.2023.0458. | |
[4] | LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190. DOI: 10.1016/j.apenergy.2018.01.011. |
[5] | YANG J F, CAI Y F, PAN C F, et al. A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition[J]. Applied Energy, 2019, 254: 113726. DOI: 10.1016/j.apenergy.2019.113726. |
[6] | BEZHA M, BEZHA K, NAGAOKA N. A Practical SoH Estimation using Adaptive ANN algorithm for the embedded EIS diagnosis in Industrial Applications[C]//2022 IEEE International Conference on Consumer Electronics, July 6-8, 2022, Taipei, China. IEEE, 2022: 571-572. DOI: 10.1109/ICCE-55306.2022.9869073. |
[7] | 韦荣阳, 毛阗, 高晗, 等. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599. DOI: 10.19799/j.cnki.2095-4239.2022.0184. |
WEI R Y, MAO T, GAO H, et al. Health state estimation of lithium ion battery based on TWP-SVR[J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. DOI: 10.19799/j.cnki.2095-4239.2022.0184. | |
[8] | LYU Z Q, WANG G, GAO R J. Synchronous state of health estimation and remaining useful lifetime prediction of Li-ion battery through optimized relevance vector machine framework[J]. Energy, 2022, 251: 123852. DOI: 10.1016/j.energy.2022.123852. |
[9] | SPOTNITZ R. Simulation of capacity fade in lithium-ion batteries[J]. Journal of Power Sources, 2003, 113(1): 72-80. DOI: 10.1016/S0378-7753(02)00490-1. |
[10] | ZHAO L, WANG Y P, CHENG J H. A hybrid method for remaining useful life estimation of lithium-ion battery with regeneration phenomena[J]. Applied Sciences, 2019, 9(9): 1890. DOI: 10.3390/app9091890. |
[11] | YUAN Z F, TIAN T, HAO F C, et al. A hybrid neural network based on variational mode decomposition denoising for predicting state-of-health of lithium-ion batteries[J]. Journal of Power Sources, 2024, 609: 234697. DOI: 10.1016/j.jpowsour. 2024.234697. |
[12] | GAO K P, HUANG Z Y, LYU C T, et al. Multi-scale prediction of remaining useful life of lithium-ion batteries based on variational mode decomposition and integrated machine learning[J]. Journal of Energy Storage, 2024, 99: 113372. DOI: 10.1016/j.est.2024. 113372. |
[13] | ZHU M Y, OUYANG Q, WAN Y, et al. Remaining useful life prediction of lithium-ion batteries: A hybrid approach of grey-Markov chain model and improved Gaussian process[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 11(1): 143-153. DOI: 10.1109/JESTPE.2021.3098378. |
[14] | WEI M, YE M, ZHANG C W, et al. A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling[J]. Energy, 2023, 283: 129086. DOI: 10.1016/j.energy.2023.129086. |
[15] | 胡天中, 余建波. 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报(工学版), 2019, 53(10): 1852-1864. DOI: 10.3785/j.issn.1008-973X.2019.10.002. |
HU T Z, YU J B. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(10): 1852-1864. DOI: 10.3785/j.issn.1008-973X.2019.10.002. | |
[16] | PAN H H, LÜ Z Q, WANG H M, et al. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine[J]. Energy, 2018, 160: 466-477. DOI: 10.1016/j.energy.2018.06.220. |
[17] | 谢旭, 蒲娴怡, 毕贵红, 等. 基于二层分解技术的锂离子电池容量评估方法[J]. 电源技术, 2022, 46(6): 647-651. |
XIE X, PU X Y, BI G H, et al. Capacity estimation method of lithium-ion batteries based on two-layer decomposition technique[J]. Chinese Journal of Power Sources, 2022, 46(6): 647-651. | |
[18] | LIN C P, XU J, SHI M J, et al. Constant current charging time based fast state-of-health estimation for lithium-ion batteries[J]. Energy, 2022, 247: 123556. DOI: 10.1016/j.energy.2022.123556. |
[19] | 李嘉波, 王志璇, 田迪, 等. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J].储能科学与技术, 2025, 14 (2): 659-670. DOI: 10.19799/j.cnki.2095-4239.2024.0732. |
LI J B, WANG Z X, TIAN D, et al. The remaining service life prediction method of lithium-ion batteries with SSA-LSTM combination under variable mode decomposition[J]. Energy Storage Science and Technology, 2025, 14 (2): 659-670. DOI: 10.19799/j.cnki.2095-4239.2024.0732. | |
[20] | 孙中麟, 李嘉波, 田迪, 等. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. DOI: 10.19799/j.cnki.2095-4239.2024.0157. |
SUN Z L, LI J B, TIAN D, et al. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD[J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. DOI: 10.19799/j.cnki.2095-4239.2024.0157. | |
[21] | 张岸, 杨春德. 基于GAN-CNN-LSTM的锂电池SOH估计[J]. 电源技术, 2021, 45(7): 902-906. DOI: 10.3969/j.issn.1002-087X.2021.07.019. |
ZHANG A, YANG C D. SOH estimation of lithium batteries based on GAN-CNN-LSTM[J]. Chinese Journal of Power Sources, 2021, 45(7): 902-906. DOI: 10.3969/j.issn.1002-087X.2021.07.019. | |
[22] | 朱冰, 夏天. 多元宇宙优化估算锂离子电池的SOC与SOH[J]. 电池, 2024, 54(5): 688-692.DOI:10.19535/j.1001-1579.2024.05.017. |
ZHU B, XIA T. Estimation of SOC and SOH for Li-ion battery by multi-verse optimization[J]. Dianchi(Battery Bimonthly), 2024, 54(5): 688-692. DOI:10.19535/j.1001-1579.2024.05.017. |
[1] | Tanying LIU, Zhenxin SUN, Liangjie WEI, Hui LIU, Liping ZHANG, Chu WANG. A review of power curve decomposition techniques for energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(8): 3065-3077. |
[2] | Rongyang WEI, Tian MAO, Han GAO, Jianren PENG, Jian YANG. Health state estimation of lithium ion battery based on TWP-SVR [J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. |
[3] | Wenjing CHENG, Tinglong PAN. Prediction for SOC of lithium-ion batteries by estimating the distribution algorithm with LSSVM [J]. Energy Storage Science and Technology, 2020, 9(6): 1948-1953. |
[4] | WANG Yuyuan, LI Jiabo, ZHANG Fu. Battery state estimation of least squares support vector machinebased on particle swarm optimization [J]. Energy Storage Science and Technology, 2020, 9(4): 1153-1158. |
[5] | LI Jiabo, LI Zhongyu, JIAO Shengjie, YE Min, XU Xinxin. Lithium-ion state estimation based on feedback least square support vector machine [J]. Energy Storage Science and Technology, 2020, 9(3): 951-957. |
[6] | SUN Shuwei, ZHAO Huiling, YU Caiyan, BAI Ying. Experimental measurement and analysis of Raman/infrared methods for lithium batteries [J]. Energy Storage Science and Technology, 2019, 8(5): 975-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||