Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 797-806.doi: 10.19799/j.cnki.2095-4239.2019.0251
Previous Articles Next Articles
HOU Zhaoxia(), WANG Xiaohui, QU Chenying, WANG Jian
Received:
2019-11-05
Revised:
2020-01-06
Online:
2020-05-05
Published:
2020-05-11
CLC Number:
HOU Zhaoxia, WANG Xiaohui, QU Chenying, WANG Jian. Research progress of MnO2 binary composites based on supercapacitors[J]. Energy Storage Science and Technology, 2020, 9(3): 797-806.
1 | ZHANG Q Z , ZANG D , MIAO Z C , et al . Research progress in MnO2-Carbon based supercapacitor electrode materials[J]. Small, 2018, 14(24):1702883-1702898. |
2 | AN K H , KIM W S , PARK Y S , et al . Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J]. Advanced Functional Materials, 2001, 11(5): 387-392. |
3 | 刘福海, 康春萍, 李中桥, 等 . 二氧化锰作为超级电容器电极材料的研究进展[J]. 东莞理工学院学报, 2016, 23(1): 42-44. |
LIU F H , KANG C P , LI Z Q , et al . Research progress of MnO2 as electrode materials used in supercapacitors[J]. Journal of Dongguan Institute of Technology, 2016, 23(1): 42-44. | |
4 | 李伟, 侯朝霞, 李建君, 等 . 基于二氧化锰/石墨烯复合材料的制备方法及在超级电容器上的研究进展[J]. 储能科学与技术, 2019, 8(2): 248-258. |
LI W , HOU Z X , LI J J , et al . Preparation methods and progress of manganese dioxide/graphene based composites in supercapacitors[J]. Energy Storage Science and Technology, 2019, 8(2): 248-258. | |
5 | 王建淦 . 纳米二氧化锰基复合材料的制备及其电化学特性研究[D]. 北京: 清华大学, 2013. |
WANG J G . Preparation of nanostructure manganese dioxide-based composites and their electrochemical properties[D]. Beijing: Tsinghua University, 2013. | |
6 | LU Q , CHEN J G , XIAO J Q . Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie International Edition, 2013, 52(7): 1882-1889. |
7 | 张熊, 孙现众, 马衍伟 . 高比能超级电容器的研究进展[J]. 中国科学: 化学, 2014, 44(7): 1081-1096. |
ZHANG X , SUN X Z , MA Y W , et al . Research progress of high specific energy supercapacitors[J]. Scientia Sinica(Chimica), 2014, 44(7): 1081-1096. | |
8 | 曹迪, 文浩, 罗斌, 等 . 超级电容器电极材料的研究进展[J]. 机电工程技术, 2019, 48(5): 224-227. |
CAO D , WEN H , LUO B , et al . Research progress of supercapacitor electrode materials[J]. Mechanical & Electrical Engineering Technology, 2019, 48(5): 224-227. | |
9 | CHEN L F , LU L , YU L , et al . Designed formation of hollow particle-based gen-doped carbon nanofibers for high-performance supercapacitors[J]. Energy & Environmental Science, 2017, 10(8): 1777-1783. |
10 | KHALID S , CAO C , NAVEED M , et al . 3D hierarchical MnO2 microspheres: A prospective material for high performance supercapacitor and lithium-ion batteries[J]. Sustainable Energy & Fuels, 2017, 1(8): 1795-1804. |
11 | ZHAO S , LIU T , HOU D , et al . Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications[J]. Applied Surface Science, 2015, 356: 259-265. |
12 | YIN B , ZHANG S , JIAO Y , et al . Facile synthesis of ultralong MnO2 nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities[J]. Cryst. Eng. Comm., 2014, 16(43): 9999-10005. |
13 | JIA H , CAI Y , ZHENG X , et al . Mesostructured carbon nanotube-on-MnO2 nanosheet composite for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38963-38969. |
14 | SHIVAKUMARA S , MUNICHANDRAIAH N . In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitors[J]. Journal of Alloys and Compounds, 2019, 787: 1044-1050. |
15 | 杨金林, 林金鑫, 郭绍义 . NiO/MnO2分级纳米片阵列复合材料的制备与超电容性能[J]. 无机化学学报, 2017, 33(2): 255-261. |
YANG J L , LIN J X , GUO S Y . Preparation and supercapacitance performances of hierarchical NiO/MnO2 nanosheet array[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(2): 255-261. | |
16 | JIN L L , MENG Y , TONG X L , et al . Facile synthesis of Co3O4@MnO2 core-shell nanocomposites for high-performance supercapacitor[J]. Materials Letters, 2017, 197: 127-130. |
17 | YANGLIKCI S , GOKCE Y , YAGMUR E , et al . The performance of sulphur doped activated carbon supercapacitors prepared from waste tea[J]. Environmental Technology, 2019, 3: 1-31. |
18 | CHEN C , FAN W , ZHANG Q , et al . One-step hydrothermal synthesis of nitrogen and sulfur co-doped grapheme for supercapacitors with high electrochemical capacitance performance[J]. Ionics, 2015, 21(12): 3233-3238. |
19 | REIT R , NGUYEN J , READY W J , et al . Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates[J]. Electrochimica Acta, 2013, 91: 96-100. |
20 | HULICOVA D , YAMASHITA J , SONEDA Y , et al . Supercapacitors prepared from melamine-based carbon[J]. Chemistry Materials, 2005, 17(5): 1241-1247. |
21 | PANDOLFO A G , HOLLENKAMP A F . Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27. |
22 | WANG G , ZHANG L , ZANG J . A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. |
23 | YAN J , WANG Q , WEI T , et al . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): 1300816-1300859. |
24 | YANG W , RATINAC K R , RINGER S P , et al . Carbon nanomaterials in biosensors: Should you use nanotubes or graphene[J]. Angewandte Chemie (International Edition), 2010, 49(12): 2114-2138. |
25 | HANG M , HUANG F , DONG Y , et al . MnO2-based nanostructures for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(43): 21380-21423. |
26 | LI G X , HOU P X , LUAN J , et al . A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors[J]. Carbon, 2018, 140: 634-643. |
27 | YAN J , FAN Z , WEI T , et al . Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities[J]. Journal of Power Sources, 2016, 194(2): 1202-1207. |
28 | YAGLIKCI S , GOKCE Y , YAGMU R , et al . The performance of sulphur doped activated carbon supercapacitors prepared from waste tea[J]. Environmental Technology, 2019, 3: 1-31. |
29 | 李祥, 郑峰, 罗援, 等 . 超级电容器活性炭/MnO2复合电极材料的制备及性能[J]. 材料导报, 2018, 32(12): 1949-1954. |
LI X , ZHENG F , LUO Y , et al . Preparation of activated carbon/MnO2 composite electrode materials and its electrochemical performance[J]. Materials Reports, 2018, 32 (12): 1949-1954. | |
30 | 王福华, 茆志友, 姚秋实, 等 . 活性炭/二氧化锰纳米复合材料的合成及超级电容性能[J]. 应用化工, 2015, 44(5): 785-788+793. |
WANG F H , MAO Z Y , YAO Q S , et al . Synthesis and supercapacitor performance of activated carbon/MnO2 composites[J]. Applied Chemical Industry, 2015, 44(5): 785-788+793. | |
31 | HORN M , GUPTA B , MACLEOD J , et al . Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials[J]. Current Opinion in Green and Sustainable Chemistry, 2019, 17: 42-48. |
32 | QIU S , LI R , HUANG Z , et al . Scalable sonochemical synthesis of petal-like MnO2/graphene hierarchical composites for high-performance supercapacitors[J]. Composites Part B: Engineering, 2019, 161: 37-43. |
33 | XIONG C , LI T , ZHAO T , et al . Three-dimensional graphene/MnO2 nanowalls hybrid for high-efficiency electrochemical supercapacitors[J]. Nano, 2018, 13(1): 1850013-1850021. |
34 | SUA H B, GU H Z , CHEN Y , et al . Preparation and electrochemical properties of graphene/MnO2 nanocomposites for supercapacitors[J]. Key Engineering Materials, 2018, 768: 102-108. |
35 | 陈翔, 燕绍九, 南文争, 等 . 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24. |
CHEN X , YAN S J , NAN W Z, et al . Synthesis and capacitive performance of globular MnO2 flowers anchored graphene composites[J]. Journal of Materials Engineering, 2019, 47(1): 18-24. | |
36 | 孙银, 黄乃宝, 王东超, 等 . 赝电容型超级电容器电极材料研究进展[J]. 电源技术, 2018, 42(5): 747-750. |
SUN Y , HUANG N Y , WNAG D C , et al . Research progress on electrode materials for pseudocapacitive supercapacitors[J]. Chinese Journal of Power Sources, 2018, 42(5): 747-750. | |
37 | 王洁, 张燕薇, 吴冰, 等 . PANI/Ni0.2Zn0.8Fe2O4复合材料的制备及其性能[J]. 化工设计通讯, 2018, 45(8): 133-135. |
WANG J , ZHANG Y W , WU B , et al . Preparation and properties of PANI/Ni0.2Zn0.8Fe2O4 composites[J]. Chemical Engineering Design Communications, 2018, 45(8): 133-135. | |
38 | 刘琴, 程存喜, 吴平平 . PANI/MnO2电极的制备及其在超级电容器中的应用[J]. 广州化工, 2017, 45(16): 69-71. |
LIU Q , CHENG C X , WU P P , et al . Preparation of PANI/MnO2 electrode and its application in supercapacitors[J]. Guangzhou Chemical Industry, 2017, 45(16): 69-71. | |
39 | RELEKAR B P , FULARI A V , LOHAR G M , et al . Development of porous manganese oxide/polyaniline composite using electrochemical route for electrochemical supercapacitors[J]. Journal of Electronic Materials, 2019, 48: 2449-2455. |
40 | ZHAO Y , WANG C A . Nano-network MnO2/polyaniline composites with enhanced electrochemical properties for supercapacitors[J]. Materials & Design, 2018, 97: 512-518. |
41 | 杨友, 杨宇青, 王国平 . 微乳法制备高导电性α-MnO2/聚苯胺复合物[J]. 山东化工, 2018, 47(19): 12-15. |
YANG Y , YANG Y Q , WANG G P . Preparation of highly conductive α-MnO2/polyaniline composite by microemulsion method[J]. Shandong Chemical Industry, 2018, 47(19): 12-15. | |
42 | 陈贵靖, 邱孝涛, 邱宇涵, 等 . 电化学沉积制备氧化石墨烯/聚吡咯复合材料及其用于超级电容器的研究[J]. 化学研究与应用, 2019, 31(1): 101-106. |
CHEN G J , QIU S T , QIU Y H , et al . Study on the preparation of graphene oxide/polypyrrole composite for supercapacitor application by electrochemical deposition[J]. Chemical Research and Application, 2019, 31(1): 101-106. | |
43 | 梁芳楠, 刘志伟, 张宁, 等 . 细乳液法制备MnO2/PPy复合材料及其电化学性能[J]. 化工进展, 2019, 38(2): 979-986. |
LIANG F N , LIU Z W , ZHANG N , et al . Synthesis of MnO2/PPy composite materials by miniemulsion polymerization and its electrochemical performances[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 979-986. | |
44 | 李倩, 符婉琛, 张存社, 等 . 聚吡咯/二氧化锰复合材料的制备及其电化学性能研究[J]. 应用化工, 2019, 48(5): 995-1000. |
LI Q , FU W C , ZHANG C S , et al . Preparation and electrochemical properties of polypyrrole/manganese dioxide composites[J]. Applied Chemical Industry, 2019, 48(5): 995-1000. | |
45 | 陈圆, 张龙, 李利亚, 等 . 聚吡咯纳米球负载二氧化锰纳米片的制备及电化学性能研究[J]. 化学研究与应用, 2017, 29(12): 1904-1908. |
CHEN Y , ZHANG L , LI L Y , et al . Synthesis and electrochemical performance studies of MnO2 nanosheets on polypyrrole nanospheres[J]. Chemical Research and Application, 2017, 29(12): 1904-1908. | |
46 | LI Y , ZHOU M , GONG Q , et al . Polythiophene grafted onto single-wall carbon-nanotubes via oligo(ethylene oxide) linkages for supercapacitor devices with enhanced electrochemical performance[J]. ChemElectroChem, 2019, 6(17): 4595-4607. |
47 | LU Q , ZHOU Y . Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties[J]. Journal of Power Sources, 2011, 196(8): 4088-4094. |
48 | 陈思 . 氧化镍基复合材料的微波法制备及其在超级电容器中的应用[D]. 太原: 太原理工大学, 2019. |
CHEN S . Microwave preparation of nickel oxide matrix composites for supercapacitors[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
49 | RACIK K M , GURUPRASAD K , MAHENDIRAN M , et al . Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(5): 5222-5232. |
50 | 翁洁, 魏咪咪, 王夺 . 柚皮活性炭/纳米Fe2O3的制备及其在超级电容器中的应用[J]. 厦门大学学报, 2019, 58(5): 678-684. |
WENG J , WEI M M , WANG D . Preparation of pomelo peel activated carbon/nano Fe2O3 and its application in supercapacitor[J]. Journal of Xiamen University, 2019, 58(5): 678-684. | |
51 | ZHU L , CHANG Z , WANG Y , et al . Core-shell MnO2@Fe2O3 nanospindles as a positive electrode for aqueous supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(44): 22066-22072. |
52 | 李济莘, 胡亚鹏, 赵晓丹, 等 . Co3O4超级电容器电极材料的制备及电化学性能研究[J]. 高师理科学刊, 2019, 39(8): 48-53. |
LI J X , HU Y P , ZHAO X D , et al . Study on preparation and electrochemical properties of Co3O4 supercapacitor electrode materials[J]. Journal of Science of Teachers' College and University, 2019, 39(8): 48-53. | |
53 | WANG K , SHI Z , WANG Y , et al . Co3O4 nanowires@MnO2 nanolayer or nanoflakes core-shell arrays for high-performance supercapacitors: The influence of morphology on performance[J]. Journal of Alloys and Compounds, 2015, 624: 85-93. |
54 | CHE H , LYU Y, LIU A , et al . Facile synthesis of three dimensional flower-like Co3O4@MnO2 core-shell microspheres as high-performance electrode materials for supercapacitors[J]. Ceramics International, 2017, 43(8): 6054-6062. |
[1] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[2] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[3] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[4] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[5] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
[6] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[7] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[8] | Kai WANG, Zhaoxia HOU, Siyao LI, Chenying QU, Yue WANG, Youjian KONG. Research progress of stretchable all-solid supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 887-895. |
[9] | Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 945-951. |
[10] | Zhijie BI, Ning ZHAO, Xiangxin GUO. Electrochromic-supercapacitors based on tungsten oxide and prussian blue [J]. Energy Storage Science and Technology, 2021, 10(3): 952-957. |
[11] | Xiliang WANG, Wenfeng CUI, Kefeng TONG, Xuelong CHEN, Zhijun QIAO, Dianbo RUAN. Design and simulation of an integrated three-port converter for supercapacitor energy storage [J]. Energy Storage Science and Technology, 2021, 10(3): 1095-1102. |
[12] | Xiangdong LI, Rui LIAN, Jiamei WU, Lianghui TANG, Zhijun QIAO, Dianbo RUAN. Thermal simulation analysis of a supercapacitor module charge-discharge cycle based on the Fluent software [J]. Energy Storage Science and Technology, 2021, 10(2): 732-737. |
[13] | Rui FENG, Hai LU, Xinyi LIU, Hao LI, Xiangyuan LI. Study on effect of an asymmetric design of the mass on the cathode and anode on supercapacitor performance [J]. Energy Storage Science and Technology, 2021, 10(2): 491-496. |
[14] | Xuelong CHEN, Xi ZHANG, Chuanhua XU, Xuewen YU, Dianbo RUAN, Zhijun QIAO, Jun WANG, Chaoyang WANG. Storage performance of large-capacitance power supercapacitor [J]. Energy Storage Science and Technology, 2021, 10(1): 198-201. |
[15] | Jiajing ZHU, Yun GAO. Research progress of water-in-salt electrolytes [J]. Energy Storage Science and Technology, 2020, 9(S1): 13-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||