1 |
KENISARIN M , MAHKAMOV K . Solar energy storage using phase change materials [J]. Renewable and Sustainable Energy Reviews, 2007, 11(9): 1913-1965.
|
2 |
谢望平, 汪南, 朱冬生, 等 . 相变材料强化传热研究进展[J]. 化工进展, 2008, 27(2): 190-195.
|
|
XIE Wangping , WANG Nan , ZHU Dongsheng , et al . Review of heat transfer enhancement of the PCMs[J]. Chemical Industry and Engineering Progress, 2008, 27(2): 190-195.
|
3 |
葛志伟, 叶锋 . 中高温储热材料的研究现状与展望[J]. 储能科学与技术, 2012, 1(2): 89-102.
|
|
GE Zhiwei , YE Feng , LasfarguesMATHIEU, et al . Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science and Technology, 2012, 1(2): 89-102.
|
4 |
BAUER T , PFLEGER N , BREIDENBACH N , et al . Material aspects of Solar salt for sensible heat storage[J]. Applied Energy, 2013, 111(11): 1114-1119
|
5 |
JOURABIAN M , FARHADI M , SEDIGHI K . On the expedited melting of phase change material (PCM) through dispersion of nanoparticles in the thermal storage unit[J]. Computers & Mathematics with Applications, 2014, 67(7): 1358-1372.
|
6 |
陈虎, 吴玉庭, 鹿院卫, 等 . 熔盐纳米流体的研究进展[J]. 储能科学与技术, 2018, 7(1): 48-55.
|
|
CHEN Hu , WU Yuting , LU Yuanwei , MA Chongfang . A review on molten salt-based nanofluids: Recent developments[J]. Energy Storage Science and Technology, 2018, 7(1): 48-55.
|
7 |
MONDRAGóNROSA, JULIáJ .ENRIQUE, CABEDO L, et al . On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles[J]. Scientific Reports, 2018, 8(1): 1-12.
|
8 |
ERCOLE D , MANCA O , VAFAI K . An investigation of thermal characteristics of eutectic molten salt-based nanofluids[J]. International Communications in Heat and Mass Transfer, 2017, 87(7): 98-104.
|
9 |
DUDDA B , SHIN D . Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69(7): 37-42.
|
10 |
TENG T P , YU C C . Characteristics of phase-change materials containing oxide nano-additives for thermal storage[J]. Nanoscale Research Letters, 2012, 7(1): 1-10.
|
11 |
MATHIEU L , QIAO G , HUI C , et al . Mechanical dispersion of nanoparticles and its effect on the specific heat capacity of impure binary nitrate salt mixtures[J]. Nanomaterials, 2015, 5(3): 1136-1146.
|
12 |
ZHU Peining , WU Yongzhi , REDDY M V , et al . TiO2 nanoparticles synthesized by the molten salt method as a dual functional material for dye-sensitized solar cells[J]. RSC Advances, 2012, 2(12): 5123-5126.
|
13 |
JO B, BANERJEE D . Enhanced specific heat capacity of molten salt-based nanomaterials: Effects of nanoparticle dispersion and solvent material[J]. Acta Materialia, 2014, 75(8): 80-91.
|
14 |
LASFARGUES M , BELL A , DING Y . In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications[J]. Journal of Nanoparticle Research, 2016, 18(6): 150-160.
|
15 |
HUANG Yi , CHENG Xiaomin , LI Yuanyuan , et al . Effect of sol-gel combustion synthesis of nanoparticles on thermal properties of KNO3-NaNO3[J]. Solar Energy Materials and Solar Cells, 2018, 188(9): 190-201.
|
16 |
HUANG Y , CHENG X , LI Y , et al . Effect of in-situ synthesized nano-MgO on thermal properties of NaNO3-KNO3[J]. Solar Energy, 2018, 160(1): 208-215.
|
17 |
冷光辉, 蓝志鹏, 葛志伟, 等 . 储热材料研究进展[J]. 储能科学与技术, 2015, 4(2): 119-130.
|
|
LENG Guanghui , LAN Zhipeng , GE Zhiwei , et al . Recent progress in thermal energy storage materials[J]. Energy Storage Science and Technology, 2015, 4(2): 119-130.
|
18 |
ZHAO X , LOU F , LI M , et al . Sol-gel-based hydrothermal method for the synthesis of 3D flower-like ZnO microstructures composed of nanosheets for photocatalytic applications[J]. Ceramics International, 2014, 40(4): 5507-5514.
|
19 |
KhateebaIrshad, Khan Muhammad Tahir, AdilMurtaza . Synthesis and characterization of transition-metals-doped ZnO nanoparticles by sol-gel auto-combustion method[J]. Physica B Condensed Matter, 2018, 543(8): 1-6.
|
20 |
MATHIEU L , GRAHAM S , MUHAMMAD A , et al . In situ production of copper oxide nanoparticles in a binary molten salt for concentrated solar power plant applications[J]. Materials, 2017, 10(5): 537-546.
|
21 |
LUO Y , DU X , AWAD A , et al . Thermal energy storage enhancement of a binary molten salt via in-situ produced nanoparticles[J]. International Journal of Heat and Mass Transfer, 2017, 104: 658-664.
|
22 |
DUDDA B , SHIN D . Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69: 37-42.
|