Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (4): 1030-1043.doi: 10.19799/j.cnki.2095-4239.2020.0041
• Energy Storage Materials and Devices • Previous Articles Next Articles
LIU"Tengyu1,2(), ZHANG"Xiong1,2(
), AN"Yabin1, LI"Chen1, MA"Yanwei1,2
Received:
2020-01-16
Revised:
2020-03-19
Online:
2020-07-05
Published:
2020-06-30
Contact:
Xiong ZHANG
E-mail:liutengyu@mail.iee.ac.cn;zhangxiong@mail.iee.ac.cn
CLC Number:
LIU Tengyu, ZHANG Xiong, AN Yabin, LI Chen, MA Yanwei. Research progress on the application of graphene for lithium-ion capacitors[J]. Energy Storage Science and Technology, 2020, 9(4): 1030-1043.
1 | DUBAL D P, AYYAD O, RUIZ V, et al. Hybrid energy storage: The merging of battery and supercapacitor chemistries[J]. Chemical Society Reviews, 2015, 44(7): 1777-1790. |
2 | WANG G P, ZHANG L, ZHANG J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. |
3 | WANG H, ZHU C, CHAO D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29(46): 1702039 |
4 | LAHEAAR A, JANES A, LUST E. Electrochemical properties of carbide-derived carbon electrodes in non-aqueous electrolytes based on different Li-salts[J]. Electrochimica Acta, 2011, 56(25): 9048-9055. |
5 | WANG H W, ZHANG Y, ANG H X, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode[J]. Advanced Functional Materials, 2016, 26(18): 3082-3093. |
6 | LI B, ZHENG J, ZHANG H, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advanced Materials, 2018, 30(17): 1705670. |
7 | ZHENG J P. High energy density electrochemical capacitors without consumption of electrolyte[J]. Journal of the Electrochemical Society, 2009, 156(7): A500-A505. |
8 | 黄晓斌, 张熊, 韦统振, 等. 超级电容器的发展及应用现状[J]. 电工电能新技术, 2017, 36(11): 63-70. |
HUANG X B, ZHANG X, WEI T Z, et al. Development and application status of super capacitors[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(11): 63-70. | |
9 | LI C, ZHANG X, SUN C, et al. Recent progress of graphene-based materials in lithium-ion capacitors[J]. Journal of Physics D: Applied Physics, 2019, 52(14): 3001. |
10 | 张熊, 马衍伟. 电化学超级电容器电极材料的研究进展[J]. 物理, 2011, 40(10): 656-663. |
ZHANG X, MA Y W. Recent advances in the development of electrode materials for supercapacitor[J]. Physical, 2011, 40(10): 656-663. | |
11 | 刘文杰, 孙现众, 郝青丽. 电化学沉积制备MnO2-PEDOT-PSS复合材料及其电容特性研究[J]. 储能科学与技术, 2018, 7(2): 262-269. |
LIU W J, SUN X Z, HAO Q L. Electrochemical deposition of MnO2/PEDOT-PSS composite and its capacitance characteristics[J]. Energy Storage Science and Technology, 2018, 7(2): 262-269. | |
12 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
13 | VELICKY M, BRADLEY D F, COOPER A J, et al. Electron transfer kinetics on mono-and multilayer graphene[J]. ACS Nano, 2014, 8(10): 10089-10100. |
14 | SEOL J H, JO I, MOORE A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science, 2010, 328(5975): 213-216. |
15 | ZHANG X, ZHANG H T, LI C, et al. Recent advances in porous graphene materials for supercapacitor applications[J]. RSC Advances, 2014, 4(86): 45862-45884. |
16 | EL-KADY M F, SHAO Y L, KANER R B. Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials, 2016, 1(7): 16033. |
17 | WANG Y G, SONG Y F, XIA Y Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. |
18 | SIVAKUMAR C, NIAN J N, TENG H S. Poly(o-toluidine) for carbon fabric electrode modification to enhance the electrochemical capacitance and conductivity[J]. Journal of Power Sources, 2005, 144(1): 295-301. |
19 | LIU J. Charging graphene for energy[J]. Nature Nanotechnology, 2014, 9(10): 739-741. |
20 | LEE J H, SHIN W H, RYOU M H, et al. Functionalized graphene for high performance lithium ion capacitors[J]. ChemSusChem, 2012, 5(12): 2328-2333. |
21 | MHAMANE D, ARAVINDAN V, KIM M S, et al. Silica-assisted bottom-up synthesis of graphene-like high surface area carbon for highly efficient ultracapacitor and li-ion hybrid capacitor applications[J]. Journal of Materials Chemistry A, 2016, 4(15): 5578-5591. |
22 | LI H, SHEN L, WANG J, FANG S, et al. Three-dimensionally ordered porous TiNb2O7 nanotubes: A superior anode material for next generation hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(32): 16785-16790. |
23 | GOKHALE R, ARAVINDAN V, YADAV P, et al. Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application[J]. Carbon, 2014, 80: 462-471. |
24 | ZHANG T, ZHANG F, ZHANG L, et al. High energy density Li-ion capacitor assembled with all graphene-based electrodes[J]. Carbon, 2015, 92: 106-118. |
25 | ZHANG L, ZHANG F, YANG X, et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Scientific Reports, 2013, 3: 1408. |
26 | YOSHIO M, WANG H Y, FUKUDA K, et al. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material[J]. Journal of the Electrochemical Society, 2000, 147(4): 1245-1250. |
27 | YOO E, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8(8): 2277-2282. |
28 | WU Z S, REN W C, XU L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano, 2011, 5(7): 5463-5471. |
29 | 孙现众, 张熊, 王凯, 等. 高能量密度的锂离子混合型电容器[J]. 电化学, 2017, 23(5): 586-603. |
SUN X Z, ZHANG X, WANG K, et al. High energy density lithium ion hybrid capacitor[J]. Electrochemistry, 2017, 23(5): 586-603. | |
30 | REN J J, SU L W, QIN X, et al. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density[J]. Journal of Power Sources, 2014, 264: 108-113. |
31 | SUN Y, TANG J, QIN F, et al. Hybrid lithium-ion capacitors with asymmetric graphene electrodes[J]. Journal of Materials Chemistry A, 2017, 5(26): 13601-13609. |
32 | LI C, ZHANG X, WANG K, et al. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability[J]. Advance Materials, 2017, 29(7): 1604690. |
33 | LI C, ZHANG X, WANG K, et al. High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode[J]. Carbon, 2018, 140: 237-248. |
34 | ASWATHY R, KESAVAN T, KUMARAN K T, et al. Octahedral high voltage LiNi0.5Mn1.5O4 spinel cathode: enhanced capacity retention of hybrid aqueous capacitors with nitrogen doped graphene[J]. Journal of Materials Chemistry A, 2015, 3(23): 12386-12395. |
35 | LIU M, ZHANG L X, HAN P X, et al. Controllable formation of niobium nitride/nitrogen-doped graphene nanocomposites as anode materials for lithium-ion capacitors[J]. Particle & Particle Systems Characterization, 2015, 32(11): 10061011. |
36 | WU A S, TAN Y Z, ZHENG S H, et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors[J]. Journal of the American Chemical Society, 2017, 139(12): 4506-4512. |
37 | ZHANG X L, LU Z S, FU Z M, et al. The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study[J]. Journal of Power Sources, 2015, 276: 222-229. |
38 | LUAN Y T, HU R, FANG Y Z, et al. Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors[J]. Nano-Micro Letters, 2019, 11(1): 30. |
39 | BOKHARI S W, SIDDIQUE A H, PAN H, et al. Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: State of the art, challenges and future prospective[J]. RSC Advances, 2017, 7(31): 18926-18936. |
40 | JIAO X Y, HAO Q L, LIU P, et al. Facile synthesis of T-Nb2O5 nanosheets/nitrogen and sulfur co-doped graphene for high performance lithium-ion hybrid supercapacitors[J]. Science China Materials, 2018, 61(2): 273-284. |
41 | YUAN T, TAN Z P, MA C R, et al. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications[J]. Advanced Energy Materials, 2017, 7(12): 1601625. |
42 | LENG K, ZHANG F, ZHANG L, et al. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance[J]. Nano Research, 2013, 6(8): 581-592. |
43 | AJURIA J, ARNAIZ M, BOTAS C, et al. Graphene-based lithium ion capacitor with high gravimetric energy and power densities[J]. Journal of Power Sources, 2017, 363: 422-427. |
44 | VELMURUGAN V, SRINIVASARAO U, RAMACHANDRAN R, et al. Synthesis of Tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications[J]. Materials Research Bulletin, 2016, 84: 145-151. |
45 | KIM H K, ARAVINDAN V, ROH M H K, et al. Exploring high-energy Li-ion batteries and capacitors with conversion-type Fe3O4-RGO as the negative electrode[J]. ChemElectroChem, 2017, 4(10): 2626-2633. |
46 | ZHANG S, LI C, ZHANG X, et al. High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode[J]. ACS Applied Materials Interfaces, 2017, 9(20): 17136-17144. |
47 | ZHAO X R, ZHANG X, LI C, et al. High-performance lithium-ion capacitors based on CoO-graphene composite anode and holey carbon nanolayer cathode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11275-11283. |
48 | 赵兴茹, 安琪, 马向东, 等. 金属氧化物作为锂离子电容器负极的研究进展[J]. 储能科学与技术, 2018, 7(4): 555-564. |
ZHAO X R, AN Q, MA X D, et al. Research progress of metal oxides as anodes for lithium ion capacitor[J]. Energy Storage Science and Technology, 2018, 7(4): 555-564. |
[1] | Fengrong HE, Qiwen ZHANG, Dechao GUO, Yimin GUO, Xiaodong GUO. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor [J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. |
[2] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[3] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[4] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[5] | Hengfei LU, Xingwu XU, Shengbin LING, Yongkuan SHEN. Development and application of a LFP pouch cell module [J]. Energy Storage Science and Technology, 2022, 11(5): 1468-1474. |
[6] | Kang PENG, Junmin LIU, Gonggen TANG, Zhengjin YANG, Tongwen XU. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263. |
[7] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[8] | Yuhe YUAN, liang LIU, Hongtao ZHANG, Qizheng YI, Yongpeng ZHANG, Yanzhe GUO, Wenchang YUAN, Xichao LI. Study on self-discharge detection method of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2022, 11(2): 690-696. |
[9] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[10] | Wenting JIN, Mansheng LIAO, Ji HUANG, Zidong WEI. The technological trend of high energy density Li-ion batteries for vehicles [J]. Energy Storage Science and Technology, 2022, 11(1): 350-358. |
[11] | Lanfang ZHU, Bing LIU. Influence of graphene surface distance and carbon nanotube diameter on capacitance of a double layer capacitor [J]. Energy Storage Science and Technology, 2020, 9(6): 1720-1728. |
[12] | Mengdie YAN, Hui LI, Min LING, Huilin PAN, Qiang ZHANG. Brief review of progress in lithium-sulfur batteries based on dissolution-deposition reactions [J]. Energy Storage Science and Technology, 2020, 9(6): 1606-1613. |
[13] | Min LI, Jiayuan XIANG, Donghui YANG, Yuping WANG, Dong CHEN, Jian CHEN, Jiangping TU. Effect of carbon-coated Al foil on properties of lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1714-1719. |
[14] | LI Xiaohui, CHEN Beihai, CHEN Ganjie, ZHANG Yuewei, WANG Jing, GU Lingxian. Preparation of high-rate double-layer carbon-coated silicon matrix composite [J]. Energy Storage Science and Technology, 2020, 9(4): 1052-1059. |
[15] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||