Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (4): 1015-1029.doi: 10.19799/j.cnki.2095-4239.2020.0216
Previous Articles Next Articles
QI"Wenbin(), ZHANG"Hua, JIN"Zhou, JI"Hongxiang, TIAN"Mengyu, WU"Yida, ZHAN"Yuanjie, TIAN"Feng, YAN"Yong, BEN"Liubin, YU"Hailong, LIU"Yanyan, HUANG"Xuejie()
Received:
2020-06-18
Online:
2020-07-05
Published:
2020-06-30
Contact:
Xuejie HUANG
E-mail:qiwenbin16@mails.ucas.edu.cn;xjhuang@jphy.ac.an
CLC Number:
QI Wenbin, ZHANG Hua, JIN Zhou, JI Hongxiang, TIAN Mengyu, WU Yida, ZHAN Yuanjie, TIAN Feng, YAN Yong, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Apr. 01, 2020 to May 31, 2020)[J]. Energy Storage Science and Technology, 2020, 9(4): 1015-1029.
1 | KARAYAYLALI P, TATARA R, ZHANG Y, et al. Coating-dependent electrode-electrolyte interface for Ni-rich positive electrodes in Li-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(6): A1022-A1030. |
2 | CHOI J, LEE S Y, YOON S, et al. The role of Zr doping in stabilizing LiNi0.6Co0.2Mn0.2O2 as a cathode material for lithium-ion batteries[J]. ChemSusChem, 2019, 12(11): 2439-2446. |
3 |
LI J, MANTHIRAM A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries[J]. Advanced Energy Materials, 2019, doi: 10.1002/aenm.201902731.
doi: 10.1002/aenm.201902731 |
4 |
CHENG X, LIU M, YIN J, et al. Regulating surface and grain-boundary structures of Ni-rich layered cathodes for ultrahigh cycle stability[J]. Small, 2020, 16(13): doi: DOI: 10.1002/smll.201906433.
doi: 10.1002/smll.201906433 |
5 | FAN X, HU G, ZHANG B, et al. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries[J]. Nano Energy, 2020, 70: doi: 10.1016/j.nanoen.2020.104450. |
6 |
SONG S H, CHO M, PARK I, et al. High-voltage-driven surface structuring and electrochemical stabilization of Ni-rich layered cathode materials for Li rechargeable batteries[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202000521.
doi: 10.1002/aenm.202000521 |
7 | XIA S, HUANG W, SHEN X, et al. Rearrangement on surface structures by boride to enhanced cycle stability for LiNi0.80Co0.15Al0.05O2 cathode in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 45: 110-118. |
8 |
ZHENG J, YANG Z, DAI A, et al. Boosting cell performance of LiNi0.8Co0.15Al0.05O2 via surface structure design[J]. Small, 2019, doi: 10.1002/smll.201904854.
doi: 10.1002/smll.201904854 |
9 | SHARIFI-ASL S, SOTO F A, FOROOZAN T, et al. Anti-oxygen leaking LiCoO2[J]. Advanced Functional Materials, 2019, 29(23):doi.org/10.1002/adfm.201901110. |
10 | ZHANG J N, LI Q, OUYANG C, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603. |
11 | OZKENDIR O M, HARFOUCHE M, ULFAT I, et al. Boron activity in the inactive Li2MnO3 cathode material[J]. Journal of Electron Spectroscopy and Related Phenomena, 2019, 235: 23-28. |
12 | SHARIFI-ASL S, YURKIV V, GUTIERREZ A, et al. Revealing grain-boundary-induced degradation mechanisms in Li-rich cathode materials[J]. Nano Letters, 2020, 20(2): 1208-1217. |
13 | PAN K, HU C, SUN Z, et al. Structural and electrochemical characterization of LiMn2O4 and Li1.05Mn1.97Nb0.03O4 with excellent high-temperature cycling stability synthesized by a simple route[J]. Journal of Applied Electrochemistry, 2020, 50(4): 451-462. |
14 |
LIANG G, WU Z, DIDIER C, et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202001454.
doi: 10.1002/anie.202001454 |
15 | ZHU R, ZHANG S, GUO Q, et al. More than just a protection layer: Inducing chemical interaction between Li3BO3 and LiNi0.5Mn1.5O4 to achieve stable high-rate cycling cathode materials[J]. Electrochimica Acta, 2020, 342: doi: 10.1016/j.electacta.2020.136074. |
16 | DE LA TORRE-GAMARRA C, EUGENIA SOTOMAYOR M, SANCHEZ J Y, et al. High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries[J]. Journal of Power Sources, 2020, 458: doi: 10.1016/j.jpowsour.2020.228033. |
17 |
ZHAO C, CHEN Z, WANG W, et al. In situ electropolymerization enables ultrafast long cycle life and high-voltage organic cathodes for lithium batteries[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202000566.
doi: 10.1002/anie.202000566 |
18 |
CHEN X R, YAO Y X, YAN C, et al. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202000375.
doi: 10.1002/anie.202000375 |
19 | CUI C, YANG C, EIDSON N, et al. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase[J]. Advanced Materials, 2020, 32(12):doi/abs/101002/aenm.201903993. |
20 | GAO X, YANG X, ADAIR K, et al. 3D vertically aligned Li metal anodes with ultrahigh cycling currents and capacities of 10 mA cm-2/20 mA·h/cm2 realized by selective nucleation within microchannel walls[J]. Advanced Energy Materials, 2020, 10(7): doi: 10.1002/aenm.201903753. |
21 | HONG S H, JUNG D H, KIM J H, et al. Electrical conductivity gradient based on heterofibrous scaffolds for stable lithium-metal batteries[J]. Advanced Functional Materials, 2020, 30(14): doi: 10.1002/adfm.201908868. |
22 | YIN Y C, WANG Q, YANG J T, et al. Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15643-9. |
23 | ZHANG X, XIANG Q, TANG S, et al. Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface[J]. Nano Letters, 2020, 20(4): 2871-2878. |
24 |
SHI K, WAN Z, YANG L, et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202000547.
doi: 10.1002/anie.202000547 |
25 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. |
26 | XIE H, SAYED S Y, KALISVAART W P, et al. Adhesion and surface layers on silicon anodes suppress formation of c-Li3.75Si and solid-electrolyte interphase[J]. ACS Applied Energy Materials, 2020, 3(2): 1609-1616. |
27 | CHEN L, ZHENG J, LIN S, et al. Synthesis of SiOx/C composite nanosheets as high-rate and stable anode materials for lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(4): 3562-3568. |
28 | HUANG G, HAN J, LU Z, et al. Ultrastable silicon anode by three-dimensional nanoarchitecture design[J]. ACS Nano, 2020, 14(4): 4374-4382. |
29 | ZHOU J, ZHAO H, LIN N, et al. Silicothermic reduction reaction for fabricating interconnected Si-Ge nanocrystals with fast and stable Li-storage[J]. Journal of Materials Chemistry A, 2020, 8(14): 6597-6606. |
30 | CHENG Z, HU Y, WU K, et al. Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries[J]. Electrochimica Acta, 2020, 337: doi: 10.1016/j.electacta.2020.135789. |
31 | JIA H, LI X, SONG J, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15217-9. |
32 | KUMAR P, BERHAUT C L, ZAPATA DOMINGUEZ D, et al. Nano-architectured composite anode enabling long-term cycling stability for high-capacity lithium-ion batteries[J]. Small, 2020, 16(11): doi: 10.1002/smll.201906812. |
33 | MA L, MENG J, PAN Y, et al. Microporous binder for the silicon-based lithium-ion battery anode with exceptional rate capability and improved cyclic performance[J]. Langmuir, 2020, 36(8): 2003-2011. |
34 | GONG X, ZHENG Y, ZHENG J, et al. Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries[J]. Chemelectrochem, 2020, 7(6): 1465-1472. |
35 |
DENG S, ZHU H, LIU B, et al. Synergy of ion doping and spiral array architecture on Ti2Nb10O29: A new way to achieve high-power electrodes[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202002665.
doi: 10.1002/adfm.202002665 |
36 | JIANG T, HE P, WANG G, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(12): doi: 10.1002/aenm.201903376. |
37 | WU N, CHIEN P H, QIAN Y, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte[J]. Angewandte Chemie-International Edition, 2020, 59(10): 4131-4137. |
38 |
DUAN H, CHEN W P, FAN M, et al. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202003177.
doi: 10.1002/anie.202003177 |
39 | NAGATA H, CHIKUSA Y, AKIMOTO J. A high rate performance positive composite electrode using a high P/S ratio and LiI composite solid electrolyte for an all-solid-state Li-S battery[J]. Journal of Power Sources, 2020, 453: doi.org/10.1016/.jpowsour.2020.227905. |
40 | SASAKI I, HONDA K, ASANO T, et al. Enhancement of the rate capabilities for all-solid-state batteries through the surface oxidation of sulfide solid electrolytes[J]. Solid State Ionics, 2020, 347: doi.org/10.1016/j.ssi.2020.115249. |
41 | CAO D, ZHANG Y, NOLAN A M, et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating[J]. Nano Letters, 2020, 20(3): 1483-1490. |
42 |
GARCIA-MENDEZ R, SMITH J G, NEUEFEIND J C, et al. Correlating macro and atomic structure with elastic properties and ionic transport of glassy Li2S-P2S5 (LPS) solid electrolyte for solid-state Li metal batteries[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202000335.
doi: 10.1002/aenm.202000335 |
43 | ABELS G, BARDENHAGEN I, SCHWENZEL J. One-pot synthesis of polymeric LiPON[J]. Polymer, 2020, 192: doi: 10.1016/j.polymer.2020.122300. |
44 | ZHAO C Z, ZHAO Q, LIU X, et al. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode[J]. Advanced Materials, 2020, 32(12): doi: 10.1002/adma.201905629. |
45 | LIU F, LIU J. Agarose based solid electrolyte for all-solid-state lithium ion batteries working from -20℃ to 80℃[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10.1149/1945-7111/ab8925. |
46 | AHMED F, CHOI I, RYU T, et al. Highly conductive divalent fluorosulfonyl imide based electrolytes improving Li-ion battery performance: Additive potentiating electrolytes action[J]. Journal of Power Sources, 2020, 455: doi: 10.1016/j.jpowsour.2020.227980. |
47 | CHO S J, YU D E, POLLARD T P, et al. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes[J]. Iscience, 2020, 23(2): |
doi.org/10.1016/j.isci.2020.100844. | |
48 | EHTESHAMI N, IBING L, STOLZ L, et al. Ethylene carbonate-free electrolytes for Li-ion battery: Study of the solid electrolyte interphases formed on graphite anodes[J]. Journal of Power Sources, 2020, 451: doi: 10.1016/j.isci.2020.100844. |
49 | ASPERN N VON, LEISSING M, WOELKE C, et al. Non-flammable fluorinated phosphorus(iii)-based electrolytes for advanced lithium-ion battery performance[J]. Chemelectrochem, 2020, 7(6): 1499-1508. |
50 | LIU J, ZHOU L, YU W, et al. Effect of fluoroethylene carbonate as an electrolyte solvent in the LiNi0.5Mn1.5O4/Li4Ti5O12 cell[J]. Journal of Alloys and Compounds, 2020, 812: doi: 10.5229/JECST.2017.8.1.53. |
51 |
ZHANG X, ZOU L, XU Y, et al. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202000368.
doi: 10.1002/aenm.202000368 |
52 |
CHEN J, FAN X, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, doi: 10.1038/s41560-020-0601-1.
doi: 10.1038/s41560-020-0601-1 |
53 | GU Y, FANG S, ZHANG X, et al. A non-flammable electrolyte for lithium-ion batteries containing lithium difluoro(oxalato)borate, propylene carbonate and tris(2,2,2-trifluoroethyl)phosphate[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10.1149/1.3473828. |
54 |
KO S, YAMADA Y, YAMADA A. A 4.8 V reversible Li2CoPO4F/graphite battery enabled by concentrated electrolytes and optimized cell design[J]. Batteries & Supercaps, 2020, doi: 10.1002/batt.202000050.
doi: 10.1002/batt.202000050 |
55 | ZHENG Q, YAMADA Y, SHANG R, et al. A cyclic phosphate-based battery electrolyte for high voltage and safe operation[J]. Nature Energy, 2020, 5(4): 291-298. |
56 | ZHAO D, WANG J, LU H, et al. Tailoring interfacial architecture of high-voltage cathode with lithium difluoro(bisoxalato) phosphate for high energy density battery[J]. Journal of Power Sources, 2020, 456: doi: 10.1016/j.jpowsour.2020.228006. |
57 | CUI Y, WANG Y, GU S, et al. An effective interface-regulating mechanism enabled by non-sacrificial additives for high-voltage nickel-rich cathode[J]. Journal of Power Sources, 2020, 453: doi: 10.1016/j.jpowsour.2020.227852. |
58 | EISELE L, LASZCZYNSKI N, SCHNEIDER M, et al. Preparation of BF3 carbonates and their electrochemical investigation as additives in lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab80ad. |
59 | LIU W, SHI Y, ZHUANG Q, et al. Ethylene glycol bis(propionitrile) ether as an additive for SEI film formation in lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020, 15(5): 4722-4738. |
60 | JIANG L, LIANG C, LI H, et al. Safer triethyl-phosphate-based electrolyte enables nonflammable and high-temperature endurance for a lithium ion battery[J]. ACS Applied Energy Materials, 2020, 3(2): 1719-1729. |
61 | LI J, WANG Z. Triethyl borate and tripropyl borate as electrolyte additives for 4.8 V high voltage layered lithium-rich oxide cathode with enhanced self-discharge suppression performance: A comparative study[J]. Journal of Power Sources, 2020, 450: https://doi.org/10.1016/j.jpowsour.2019.227648. |
62 | WALTON J J, HIASA T, KUMITA H, et al. Fluorocyanoesters as additives for lithium-ion battery electrolytes[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15893-15902. |
63 | PARK H, KIM H J. Diphenyl diselenide as SEI-forming additive for a high-voltage LiCoO2/graphite battery[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab80cf. |
64 | XIANG F, WANG P, CHENG H. Methyl 2,2-difluoro-2-(fluorosulfonyl) acetate as a novel electrolyte additive for high-voltage LiCoO2/graphite pouch Li-ion cells[J]. Energy Technology, 2020, 8(5):doi.org/10.1002/ente.201901277. |
65 | YAN X, CHEN C, ZHU X, et al. Aminoalkyldisiloxane as effective electrolyte additive for improving high temperature cycle life of nickel-rich LiNi0.6Co0.2Mn0.2O2/graphite batteries[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228099. |
66 | YANG J, SHKROB I, LIU K, et al. 4-(trimethylsilyl) morpholine as a multifunctional electrolyte additive in high voltage lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7a9e. |
67 | KIM K, HWANG D, KIM S, et al. Cyclic aminosilane-based additive ensuring stable electrode-electrolyte interfaces in Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(15): doi: 10.1002/aenm.202000012. |
68 | CHOUDHURY S, TU Z, NIJAMUDHEEN A, et al. Stabilizing polymer electrolytes in high-voltage lithium batteries[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-11015-0. |
69 | HAGOS T T, SU W N, HUANG C J, et al. Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228053. |
70 | DENG S, SUN Y, LI X, et al. Eliminating the detrimental effects of conductive agents in sulfide-based solid-state batteries[J]. ACS Energy Letters, 2020, 5(4): 1243-1251. |
71 | NAKAMURA H, KAWAGUCHI T, MASUYAMA T, et al. Dry coating of active material particles with sulfide solid electrolytes for an all-solid-state lithium battery[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227579. |
72 | LI X, LIANG J, BANIS M N, et al. Totally compatible P4S10+n cathodes with self-generated Li+ pathways for sulfide-based all-solid-state batteries[J]. Energy Storage Materials, 2020, 28: 325-333. |
73 | DEVAUX D, VILLALUENGA I, JIANG X, et al. Lithium-sulfur batteries with a block copolymer electrolyte analyzed by X-ray microtomography[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab7c6c. |
74 | WANG Y, LIU T, ESTEVEZ L, et al. Kinetics of all-solid-state sulfur cathodes[J]. Energy Storage Materials, 2020, 27: 232-243. |
75 | HOMANN G, MEISTER P, STOLZ L, et al. High-voltage all-solid-state lithium battery with sulfide-based electrolyte: Challenges for the construction of a bipolar multicell stack and how to overcome them[J]. ACS Applied Energy Materials, 2020, 3(4): 3162-3168. |
76 | LI S, MA J, ZENG Z, et al. Enhancing the kinetics of lithium-sulfur batteries under solid-state conversion by using tellurium as a eutectic accelerator[J]. Journal of Materials Chemistry A, 2020, 8(6): 3405-3412. |
77 | WANG J, JIA L, DUAN S, et al. Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode[J]. Energy Storage Materials, 2020, 28: 375-382. |
78 | CHEN J, ZHANG H, YANG H, et al. Towards practical Li-S battery with dense and flexible electrode containing lean electrolyte[J]. Energy Storage Materials, 2020, 27: 307-315. |
79 | LEMARIE Q, MAIRE E, IDRISSI H, et al. Sulfur-based electrode using a polyelectrolyte binder studied via coupled in situ synchrotron X-ray diffraction and tomography[J]. ACS Applied Energy Materials, 2020, 3(3): 2422-2431. |
80 |
HOU C, HAN J, LIU P, et al. Operando observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy[J]. Advanced Energy Materials, 2019, doi: 10.1002/aenm.201902675.
doi: 10.1002/aenm.201902675 |
81 | LIU S, ZENG X, LIU D, et al. Understanding the conductive carbon additive on electrode/electrolyte interface formation in lithium-ion batteries via in situ scanning electrochemical microscopy[J]. Frontiers in Chemistry, 2020, 8: doi: 10.3389/fchem.2020.00114. |
82 | KIM S, JUNG C, KIM H, et al. The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte[J]. Advanced Energy Materials, 2020, 10(12): doi: 10.1002/aenm.201903993. |
83 | MAIBACH J, KALLQUIST I, ANDERSSON M, et al. Probing a battery electrolyte drop with ambient pressure photoelectron spectroscopy[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-10803-y. |
84 | MALABET H J G, ROBLES D J, DE ANDRADE V, et al. In operando XANES imaging of high capacity intermetallic anodes for lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(4): doi: 10.1149/1945-7111/ab78fb. |
85 | LIU Z, BI Z, SHANG Y, et al. Visualization of electrochemical cycling-induced dimension change in LiMn2O4 nanoparticles by high-speed atomic force microscopy[J]. Langmuir, 2020, 36(17): 4689-4694. |
86 | ZHANG W, SEO D H, CHEN T, et al. Kinetic pathways of ionic transport in fast-charging lithium titanate[J]. Science, 2020, 367(6481): 1030-1034. |
87 | BURKHARDT S, FRIEDRICH M S, ECKHARDT J K, et al. Charge transport in single NCM cathode active material particles for lithium-ion batteries studied under well-defined contact conditions[J]. ACS Energy Letters, 2019, 4(9): 2117-2123. |
88 | SHIN S, RAJENDRA T, NELSON G J. Mesoscale transport-geometry interactions in lithium ion cathode active materials: Particle scale galvanostatic simulations based on X-ray nanotomography data[J]. Journal of Power Sources, 2020, 454: doi: 10.1016/j.jpowsour.2020.227891. |
89 | LU X, BERTEI A, FINEGAN D P, et al. 3d microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15811-x. |
90 | ARIYOSHI K, EGUCHI M, HIROOKA M. Examining the long-term cyclabilities of Li Ni1/2Mn3/2O4 and Li[Li0.1Al0.1Mn1.8]O4 using a full-cell configuration including LTO-counter electrodes with extra capacity[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab872f. |
91 | NI X, HE Y, WANG H. Expanding the metrology of coulombic efficiency using neutron depth profiling[J]. Radiation Effects and Defects in Solids, 2020, 175(3/4): 356-366. |
92 | DIEKMANN J, DOOSE S, WEBER S, et al. Development of a new procedure for nail penetration of lithium-ion cells to obtain meaningful and reproducible results[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab78ff. |
93 | FORESTIER C, LECOCQ A, ZANTMAN A, et al. Study of the role of LiNi1/3Mn1/3Co1/3O2/graphite Li-ion pouch cells confinement, electrolyte composition and separator coating on thermal runaway and off-gas toxicity[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab829e. |
94 | KONDO H, BABA N, MAKIMURA Y, et al. Model validation and simulation study on the thermal abuse behavior of LNi0.8Co0.15Al0.05O2-based batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227464. |
95 | PATEL D, ROBINSON J B, BALL S, et al. Thermal runaway of a Li-ion battery studied by combined ARC and multi-length scale X-ray CT[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab7fb6. |
96 | LANG M, DARMA M S D, MEREACRE L, et al. Post mortem analysis of ageing mechanisms in LiNi0.8Co0.15Al0.05O2-LiNi0.5Co0.2Mn0.3O2- LiMn2O4/graphite lithium ion batteries[J]. Journal of Power Sources, 2020, 453: doi: 10.1016/j.jpowsour.2020.227915. |
97 |
GIMENEZ C S, HELMERS L, SCHILDE C, et al. Modeling the electrical conductive paths within all-solid-state battery electrodes[J]. Chemical Engineering & Technology, 2020, doi: 10.1002/ceat.201900501.
doi: 10.1002/ceat.201900501 |
98 | SMITH J G, SIEGEL D J. Low-temperature paddlewheel effect in glassy solid electrolytes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15245-5. |
99 | BONAKALA S, PATHAK A D, DEYKO A, et al. First-principles characterization and experimental validation of the solid-solid interface in a novel organosulfur cathode for the Li-S battery[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18101-18109. |
100 | XU N, LI L, HE Y, et al. Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(13): 6229-6237. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[10] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[11] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[12] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[13] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[14] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[15] | Ying TAO, Lingfei ZHAO, Yunxiao WANG, Yuliang CAO, Shulei CHOU. Stabilization of sodium metal anodes by dual-salt high concentration electrolyte [J]. Energy Storage Science and Technology, 2022, 11(4): 1103-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||