Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1548-1557.doi: 10.19799/j.cnki.2095-4239.2020.0132
• Energy Storage System and Engineering • Previous Articles Next Articles
Ying HE(), Genpeng ZHONG, Yi CHEN()
Received:
2020-04-02
Revised:
2020-04-25
Online:
2020-09-05
Published:
2020-09-08
Contact:
Yi CHEN
E-mail:03101@tongji.edu.cn;chenyi63@tongji.edu.cn
CLC Number:
Ying HE, Genpeng ZHONG, Yi CHEN. Research on SOC estimation of lithium-ion power battery based on feature combination and stacking fusion ensemble Learning[J]. Energy Storage Science and Technology, 2020, 9(5): 1548-1557.
Table 4
The 17 statistical parameters of the kinematic fragment"
参数 | 说明 | 参数 | 说明 |
---|---|---|---|
Pa | 加速时间 | P60_70 | 60~70 km/h车速比例 |
Pd | 减速时间 | P>70 | >70 km/h车速比例 |
Pc | 匀速时间 | A32 | 减速段减速度在-3~-2 m/s2比例 |
P0_10 | 0~10 km/h车速比例 | A21 | 减速段减速度在-2~-1 m/s2比例 |
P10_20 | 10~20 km/h车速比例 | A1_01 | 减速段减速度在-1~0.1 m/s2比例 |
P20_30 | 20~30 km/h车速比例 | A01_1 | 加速段减速度在0.1~1 m/s2比例 |
P30_40 | 30~40 km/h车速比例 | A1_2 | 加速段减速度在1~2 m/s2比例 |
P40_50 | 40~50 km/h车速比例 | A2_3 | 加速段减速度在2~3 m/s2比例 |
P50_60 | 50~60 km/h车速比例 |
Table 5
Six types of cluster centers"
参数 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Tc | 45.4 | 42.6 | 31.8 | 25.5 | 245.0 | 33.6 |
Td | 28.9 | 50.1 | 35.7 | 48.4 | 216.4 | 49.7 |
Ta | 29.8 | 51.1 | 52.2 | 44.0 | 236.6 | 69.3 |
T | 104.1 | 143.8 | 119.7 | 117.9 | 698.0 | 152.6 |
L | 269.9 | 830.3 | 873.7 | 944.4 | 9523.8 | 2173.1 |
vmavg | 10.3 | 21.7 | 27.2 | 30.5 | 49.7 | 49.5 |
vmax | 22.8 | 41.5 | 52.1 | 59.1 | 84.5 | 88.1 |
vmsd | 7.1 | 12.6 | 16.8 | 18.6 | 20.6 | 25.6 |
vsd | 7.6 | 13.9 | 18.4 | 20.5 | 21.8 | 29.3 |
amin | -0.47 | -0.75 | -1.10 | -1.14 | -1.09 | -2.21 |
amax | 0.45 | 0.72 | 0.72 | 1.23 | 0.94 | 1.65 |
aa | 0.27 | 0.37 | 0.37 | 0.57 | 0.31 | 0.63 |
ad | -0.28 | -0.37 | -0.56 | -0.53 | -0.34 | -0.86 |
amsd | 0.05 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 |
Imax | 21.3 | 46.8 | 54.0 | 80.2 | 110.0 | 126.1 |
Im | 4.9 | 9.2 | 11.2 | 13.4 | 19.7 | 27.9 |
Isd | 7.7 | 17.3 | 22.5 | 32.1 | 33.2 | 48.7 |
Pa | 28.7% | 35.4% | 44.6% | 37.4% | 34.5% | 47.7% |
Pd | 28.0% | 35.0% | 29.7% | 41.4% | 31.7% | 35.0% |
Pc | 43.3% | 29.6% | 25.7% | 21.3% | 33.7% | 17.3% |
P0_10 | 61.5% | 34.1% | 36.5% | 35.5% | 9.7% | 25.2% |
P10_20 | 28.2% | 16.3% | 11.3% | 11.0% | 8.4% | 7.7% |
P20_30 | 10.0% | 23.5% | 11.6% | 10.3% | 8.7% | 5.9% |
P30_40 | 1.2% | 19.1% | 16.0% | 11.2% | 8.5% | 5.8% |
P40_50 | 0.1% | 6.3% | 15.2% | 14.9% | 11.7% | 6.4% |
P50_60 | 0.0% | 1.0% | 7.3% | 10.9% | 15.7% | 10.7% |
P60_70 | 0.0% | 0.3% | 2.1% | 4.7% | 15.8% | 13.9% |
P>70 | 0.0% | 0.1% | 1.0% | 2.4% | 21.8% | 25.3% |
A32 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 3.8% |
A21 | 0.0% | 0.4% | 4.0% | 5.1% | 0.9% | 8.6% |
A1_01 | 72.0% | 64.8% | 52.0% | 58.2% | 64.7% | 40.4% |
A01_1 | 29.1% | 35.5% | 44.8% | 31.3% | 34.1% | 38.7% |
A1_2 | 0.0% | 0.2% | 0.2% | 6.4% | 0.5% | 8.5% |
A2_3 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 1.0% |
Table 7
The training result of the stacking model"
模型 | 特征集合 | MAE | MSE | |
---|---|---|---|---|
Xgboost Model 0 | 瞬态特征 | 0.63 | 0.59 | 0.9788 |
Xgboost Model 1 | 瞬态+驾驶行为 特征 | 0.47 | 0.46 | 0.9913 |
Xgboost Model 2 | 瞬态+衰老 特征 | 0.61 | 0.56 | 0.9802 |
Xgboost Model 3 | 瞬态+时变 特征 | 0.45 | 0.40 | 0.9843 |
Linear Model 4 | 瞬态+行驶里程 特征 | 0.55 | 0.51 | 0.9842 |
Xgboost Model 5 | 瞬态+动态 特征 | 0.44 | 0.39 | 0.9914 |
Xgboost Model 6 | 全部特征 | 0.42 | 0.34 | 0.9949 |
Xgboost Model 7 | 全部特征+全部 预测值 | 0.39 | 0.32 | 0.9995 |
1 | 新能源汽车国家大数据联盟. 中国新能源汽车大数据研究报告[M]. 北京: 社会科学文献出版社, 2019: 1-10. |
2 | 李靖. 基于UKF算法的电动汽车动力电池荷电状态的研究[D]. 西安: 西安理工大学, 2013. |
3 | 周美兰, 赵强, 周永琴. 改进的PSO-BP神经网络估算磷酸铁锂电池SOC[J]. 哈尔滨理工大学学报, 2015, 20(4): 88-92. |
ZHOU Meilan, ZHAO Qiang, ZHOU Yongqin. State of charge estimation for LiFePO4 cell using improved PSO-BP neural network[J]. Journal of Harbin University of Science and Technology, 2015, 20(4): 88-92. | |
4 | GUO Y, ZHAO Z, LUO M. SOC estimation of lithium battery based on improved BP neural network[J]. Energy Procedia, 2017, 105: 4153-4158. |
5 | 孙豪豪, 潘庭龙, 吴定会. 基于自适应电池模型的SOC加权在线估计[J]. 系统仿真学报, 2017, 8(29): 1677-1675. |
SUN Haohao, PAN Tinglong, WU Dinghui. Weighted online estimation of SOC based on adaptive battery model[J]. Journal of System Simulation, 2017, 8(29): 1677-1675. | |
6 | 孙志祥. 考虑温度影响的动力锂电池SOC估计算法和验证[D]. 长春: 吉林大学, 2018. |
7 | 康燕琼. 纯电动汽车锂电池组健康状态(SOH)的估计研究[D]. 北京: 北京交通大学, 2015. |
KANG Yanqiong. Research of estimation for SOH of PEV Li-ion battery pack[J]. Beijing: Beijing Jiaotong University, 2015. | |
8 | CHEN Tianqi, GUESTRIN Carlos. Xgboost: A scalable tree boosting system[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016. |
9 | WOLPERT D H. Stacked generalization[M]. USA: Springer, 2011. |
10 | 刘毅, 谭国俊, 何晓群. 优化电池模型的自适应Sigma卡尔曼荷电状态估算[J]. 电工技术学报, 2017, 20(4): 108-118. |
LIU Yi, TAN Guojun, HE Xiaoqun. Optimized battery model based adaptive sigma Kalman filter for state of charge estimation[J]. Transactions of China Electrotechnical Society, 2017, 20(4): 108-118. | |
11 | 廖恩华. 基于神经网络的电动汽车磷酸铁锂电池SOC估算方法研究[D]. 成都: 电子科技大学, 2011. |
12 | 郝中华. 基于主元分析的锂动力电池SOC估算方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2014. |
HAO Zhonghua. Lithium battery SOC estimation method study based on principal component anaylsis[D]. Harbin: Harbin University of Science and Technology, 2014. | |
13 | 杨辉宝. 福州市区典型道路汽车行驶工况的研究[D]. 福州: 福州大学, 2017. |
14 | 田宇. 太原市轻型车道路行驶工况构建与分析[D]. 太原: 太原理工大学, 2018. |
15 | 刘存山. 基于NEDC工况的动力电池使用寿命测试方法研究[J]. 电源技术, 2017, 41(11): 47-49. |
LIU Cunshan. Research on battery life test method based on NEDC cycle[J]. Chinese Journal of Power Sources, 2017, 41(11): 47-49. | |
16 | 张憧. 电动汽车续驶里程影响因素及预测研究[D]. 合肥: 合肥工业大学, 2018. |
17 | 谢明维. 纯电动汽车剩余续驶里程估算研究[D]. 镇江: 江苏大学, 2016. |
XIE Weiming. Research on remaining driving range estimation of battery electric vehicle[D]. Zhenjiang: Jiangsu University, 2016. | |
18 | 李艳芳, 王钰, 李济洪. 几种交叉验证检验的可重复性[J]. 太原师范学院学报(自然科学版), 2013, 12(4): 46-49. |
LI Yanfang, WANG Yu, LI Jihong. The replicability of several cross-validated tests[J]. Journal of Teiyuan Normal University(Natural Science Edition), 2013, 12(4): 46-49. |
[1] | CHANG Zeyu, ZHANG Zhiqi, ZHANG Xiaodong, LI Li, YU Yajuan. A data-driven state of health (SOH) assessment platform for vehicle power batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1847-1853. |
[2] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[3] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[4] | Xiaoyuan ZHANG, Jinhao ZHANG, Yajun JIANG. Power battery health evaluation based on improved TCN model [J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626. |
[5] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[6] | Jian HU, Chunjing LIN, Weijian HAO, Tianlei ZHENG. Current status and suggestions for the construction of power battery standard system [J]. Energy Storage Science and Technology, 2022, 11(1): 313-320. |
[7] | Feifei LIU, Rongqing BAO, Xianfu CHENG, Jun LI, Wu QIN, Chaofeng YANG. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions [J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282. |
[8] | Yi'nan ZHU, Taolin LÜ, Zhiyun ZHAO, Wen YANG. State of charge estimation of lithium ion battery based on parallel Kalman filter [J]. Energy Storage Science and Technology, 2021, 10(6): 2352-2362. |
[9] | Xinyu CAO, Fei PENG, Liwei LI, Jianguang YIN. SOC estimation of lithium battery based on IBAS-NARX neural network model [J]. Energy Storage Science and Technology, 2021, 10(6): 2342-2351. |
[10] | Yuanfu ZHU, Wenwu HE, Jianxing LI, Youcai LI, Peiqiang LI. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU [J]. Energy Storage Science and Technology, 2021, 10(3): 1163-1176. |
[11] | Haimin WANG, Yufei WANG, Feng HU. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. |
[12] | Banghua DU, Yu ZHANG, Tiezhou WU, Yanlin HE, Zilong LI. An online identification method for equivalent model parameters of aging lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 342-348. |
[13] | Yuanjin ZHANG, Huawei WU, Congjin YE. Estimation of the SOC of a battery based on the AUKF-BP algorithm [J]. Energy Storage Science and Technology, 2021, 10(1): 237-241. |
[14] | Juqiang FENG, Long WU, Kaifeng HUANG, Jun LU, Xing ZHANG. Online SOC estimation of a lithium-ion battery based on FFRLS and AEKF [J]. Energy Storage Science and Technology, 2021, 10(1): 242-249. |
[15] | Lei GAO, Yufeng MENG, Qibin YAN, Hui YANG. The influence of copper foil appearance quality on Li-ion power battery performance [J]. Energy Storage Science and Technology, 2020, 9(S1): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||