Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 958-963.doi: 10.19799/j.cnki.2095-4239.2019.0231
Previous Articles Next Articles
WEI Meng(), LI Jiabo, YE Min, GAO Kangping, XU Xinxin
Received:
2019-10-14
Revised:
2019-11-27
Online:
2020-05-05
Published:
2020-05-11
CLC Number:
WEI Meng, LI Jiabo, YE Min, GAO Kangping, XU Xinxin. SOC estimation of Li-ion battery based on gaussian mixture regression[J]. Energy Storage Science and Technology, 2020, 9(3): 958-963.
1 | CHENG C , RUI X , SHEN W . A lithium-ion battery-in-the-loop approach to test and validate multi-scale dual H infinity filters for state of charge and capacity estimation[J]. IEEE Transactions on Power Electronics, 2018(99): doi: 10.1109/TPEL.2017.2670081. |
2 | MENG J , LUO G , FEI G . Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman filter and support vector machine[J]. IEEE Transactions on Power Electronics, 2015, 31(3): 2226-2238. |
3 | ZHANG Y , RUI X , HE H , et al . Lithium-ion battery pack state of charge and state of energy estimation algorithms using a hardware-in-the-loop validation[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4421-4431. |
4 | SHENG H , XIAO J , WANG P . Lithium iron phosphate battery electric vehicle state-of-charge estimation based on evolutionary gaussian mixture regression[J]. IEEE Transactions on Industrial Electronics, 2016, 64(1): 544-551. |
5 | 盛瀚民 .计及数据不可靠性的动力电池组SOC估计方法研究[D]. 成都: 西南交通大学, 2017. |
SHENG Hanmin . A study on power battery SOC estimation considering date uncertainty[D]. Chengdu: Southwest Jiatong University, 2017. | |
6 | 程晨, 顾伟, 褚建新, 等 . 基于Sage-Husa自适应滤波算法的锂电池荷电状态估计[J].南京工业大学学报(自然科学版), 2016, 38(3): 126-130. |
CHENG Chen , GU Wei , CHU Jianxin , et al . State of charge estimation of lithium batteries based on Sage-Husa adaptive filter algorithm[J]. Journal of Nanjing Tech University (Natural Science Edition), 2016, 38(3): 126-130. | |
7 | 田茂飞, 安治国, 陈星, 等 . 基于在线参数辨识和AEKF的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(4): 745-750. |
TIAN Maofei , AN Zhiguo , CHEN Xing , et al . SOC estimation of lithium battery based online parameter identification and AEKF[J]. Energy Storage Science and Technology, 2019, 8(4): 745-750. | |
8 | LI B , BEI S . Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter[J]. Neural Computing and Applications, 2018: doi: 10.1007/s00521-018-3901-7. |
9 | YUE L , CHATTOPADHYAY P , XIONG S , et al . Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge[J]. Applied Energy, 2016, 184: 266-275. |
10 | 苏振浩, 李晓杰, 秦晋, 等 . 基于BP人工神经网络模型的动力电池SOC估计方法[J]. 储能科学与技术, 2019, 8(5): 868-873. |
SU Zhenhao , LI Xiaojie , QIN Jin , et al . SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873. | |
11 | 戴庚, 耿诗尧 .基于最小二乘支持向量机的SOC估计方法[J]. 信息与电脑(理论版), 2018, 39(2): 36-37. |
DAI Geng , GENG Shiyao . SOC estimation based on least squares support vector machines[J].China Computer & Communication, 2018, 39(2): 36-37. | |
12 | MEI C , SU Y , LIU G , et al . Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes[J]. Chinese Journal of Chemical Engineering, 2016, 25(1): 116-122. |
13 | SAHINOGLU G O , PAJOVIC M , SAHINOGLU Z , et al . Battery state of charge estimation based on regular/recurrent gaussian process regression[J]. IEEE Transactions on Industrial Electronics, 2017(99): doi: 10.1109/TIE.2017.2764869. |
14 | LIU D , PANG J , ZHOU J , et al . Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability, 2013, 53(6): 832-839. |
15 | 何志昆, 刘光斌, 赵曦晶, 等 . 高斯过程回归方法综述[J]. 控制与决策, 2013(8): 1121-1129. |
HE Zhikun , LI Guangbin , ZHAO Xijing , et al . Overview of Gaussian process regression [J]. Control and Decision, 2013(8): 1121-1129. | |
16 | 李嘉波, 魏孟, 叶敏, 等 . 基于高斯过程回归的锂离子电池SOC估计[J]. 储能科学与技术, 2019, 9(1): 131-137. |
LI Jiabo , WEI Meng , YE Min , et al . SOC estimation of lithium-ion batteries based on Gauss process regression[J]. Energy Storage Science and Technology, 2019, 9(1): 131-137. | |
17 | 周亚同, 赵翔宇, 何峰, 等 . 基于高斯过程混合模型的大气温湿度预测[J]. 农业工程学报, 2018, 34(5): 219-226. |
ZHOU Yatong , ZHAO Xiangyu , HE Feng , et al . Atmospheric temperature and humidity prediction of Gaussian process mixed model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 219-226. | |
18 | 杨飞, 乔铁柱, 庞宇松, 等 . 基于改进的高斯混合回归的球磨机料位软测量[J]. 现代电子技术, 2018, 41(5): 153-158. |
YANG Fei , QIAO Tiezhu , PANG Yusong , et al . Soft measurement for ball mill fill level based on improved Gaussian mixture regression[J]. Modern Electronics Technique, 2018, 41(5): 153-158. |
[1] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[2] | CHANG Zeyu, ZHANG Zhiqi, ZHANG Xiaodong, LI Li, YU Yajuan. A data-driven state of health (SOH) assessment platform for vehicle power batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1847-1853. |
[3] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[4] | Xiaoyuan ZHANG, Jinhao ZHANG, Yajun JIANG. Power battery health evaluation based on improved TCN model [J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626. |
[5] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[6] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[7] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[8] | Chunhui LIU, Hongbin REN. Research on active equalization of power batteries based on state of charge [J]. Energy Storage Science and Technology, 2022, 11(2): 667-672. |
[9] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[10] | Shuai WANG, Hongyan MA, Jiaming DOU, Yingda ZHANG, Shengyan LI, Lujin HU. Estimation of lithium-ion battery state of charge based on UGOA-BP [J]. Energy Storage Science and Technology, 2022, 11(1): 258-264. |
[11] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
[12] | Jian HU, Chunjing LIN, Weijian HAO, Tianlei ZHENG. Current status and suggestions for the construction of power battery standard system [J]. Energy Storage Science and Technology, 2022, 11(1): 313-320. |
[13] | Hang SU, Huaibin GAO, Zhengguang LI, Hongjun LI, Jianfei LIU, Xiaobo ZUO, Linlin JI. State of charge estimation of Li-ion battery based on BCRLS-ACKF [J]. Energy Storage Science and Technology, 2021, 10(6): 2334-2341. |
[14] | Feifei LIU, Rongqing BAO, Xianfu CHENG, Jun LI, Wu QIN, Chaofeng YANG. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions [J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282. |
[15] | Yongqiang ZHENG, Yue WU, Panpan ZHANG, Bo LEI, Yaodong ZHENG. Research on collaborative control strategy for simultaneous decommissioning based on multi-branch PCS topology of ESS using second-life EV batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2283-2292. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||