Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1760-1767.doi: 10.19799/j.cnki.2095-4239.2020.0125
• Energy Storage Materials and Devices • Previous Articles Next Articles
Pei DAI(), Xiaomin CHENG(
), Yuanyuan LI
Received:
2020-03-30
Revised:
2020-05-11
Online:
2020-11-05
Published:
2020-10-28
Contact:
Xiaomin CHENG
E-mail:daipei@whut.edu.cn;chengxm@whut.edu.cn
CLC Number:
Pei DAI, Xiaomin CHENG, Yuanyuan LI. Effect of nano-NiO synthesized by sol-gel combustion on the microstructures and thermal properties of solar salt[J]. Energy Storage Science and Technology, 2020, 9(6): 1760-1767.
Table 2
Specific heat capacity of modified salt"
样品 | Cp/J·(g·℃)-1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
固态比热容与变化 | 液态比热容与变化 | ||||||||||
第一次 | 第二次 | 第三次 | 平均值 | 增长 | 第一次 | 第二次 | 第三次 | 平均值 | 增长 | ||
基盐 | 1.42 | 1.42 | 1.41 | 1.42 | - | 1.37 | 1.36 | 1.36 | 1.36 | - | |
TP-1/3 | 2.02 | 2.10 | 2.08 | 2.07 | 45.8% | 1.72 | 1.72 | 1.73 | 1.72 | 26.5% | |
TP-1/2 | 2.59 | 2.56 | 2.60 | 2.58 | 81.7% | 2.13 | 2.14 | 2.14 | 2.14 | 57.4% | |
TP-1/1 | 2.26 | 2.28 | 2.20 | 2.25 | 58.5% | 1.98 | 1.96 | 1.97 | 1.97 | 44.9% | |
MP-300 | 1.38 | 1.36 | 1.36 | 1.37 | -3.5% | 1.16 | 1.16 | 1.08 | 1.13 | -16.9% | |
MP-500 | 1.89 | 1.88 | 1.90 | 1.89 | 33.1% | 1.67 | 1.69 | 1.63 | 1.66 | 22.1% | |
MP-600 | 1.53 | 1.55 | 1.60 | 1.56 | 9.9% | 1.32 | 1.30 | 1.31 | 1.31 | -3.7% | |
MT-1 | 1.58 | 1.57 | 1.58 | 1.58 | 11.3% | 1.37 | 1.39 | 1.32 | 1.36 | 0 | |
MT-5 | 2.01 | 2.03 | 2.01 | 2.02 | 42.3% | 1.34 | 1.30 | 1.41 | 1.35 | -0.7% |
1 | NUNES V M B, QUEIROS C S, LOURENCO M J V, et al. Molten salts as engineering fluids—A review Part I. Molten alkali nitrates[J]. Applied Energy, 2016, 183: 603-611. |
2 | BELÉN M S, JAVIER N M, JAVIER N M, et al. Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3924-3945 |
3 | NICOLE P, THOMAS B, CLAUDIA M, et al. Thermal energy storage-overview and specific insight into nitrate salts for sensible and latent heat storage[J]. Beilstein Journal of Nanotechnology, 2015, 6: 1487-1497. |
4 | 葛志伟, 叶锋, LASFARGUES M, 等. 中高温储热材料的研究现状与展望[J]. 储能科学与技术, 2012, 1(2):89-102. |
GE Z F, YE F, LASFARGUES M, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science and Technology, 2012, 1(2): 89-102. | |
5 | 杜凤丽, 原郭丰, 常春, 等. 太阳能热发电技术产业发展现状与展望[J]. 储能科学与技术, 2013, 2(6): 551-564. |
DU L F, YUAN G F, CHANG C, et al. Current status and perspective[J]. Energy Storage Science and Technology, 2013, 2(6): 551-564. | |
6 | 吴玉庭, 任楠, 马重芳, 等. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6): 586-592. |
WU Y T, REN N, MA C F, et al. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6): 586-592. | |
7 | DINTER F, GONZALEZ D M. Operability, reliability and economic benefits of CSP with thermal energy storage: First year of operation of ANDASOL 3[J]. Energy Procedia, 2014, 49: 2472-2481. |
8 | SCHULLER M, SHAO Q, LALK T. Experimental investigation of the specific heat of a nitrate-alumina nanofluid for solar thermal energy storage systems[J]. International Journal of Thermal Sciences, 2015, 91: 142-145. |
9 | CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Research Letters, 2013, 8(1): 448-458. |
10 | BETTS M. The effects of nanoparticle augmentation of nitrate thermal storage materials for use in concentrating solar power applications[J]. Territoire En Mouvement, 2011, 22: 98-111. |
11 | LASFARGUES M, GENG Q, CAO H, et al. Mechanical dispersion of nanoparticles and its effect on the specific heat capacity of impure binary nitrate salt mixtures[J]. Nanomaterials, 2015, 5(3): 1136-1146. |
12 | STARACE A K, GOMEZ J C, GLATZMAIER G C. Can particle-stabilized inorganic dispersions be high-temperature heat-transfer and thermal energy storage fluids[J]. Jornal of Materials Science, 2013, 48(11): 4023-4031. |
13 | DUDDA B, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69: 37-42. |
14 | HUANG Y, CHENG X M, LI Y Y, et al. Effect of sol-gel combustion synthesis of nanoparticles on thermal properties of KNO3-NaNO3[J]. Solar Energy Materials and Solar Cells, 2018, 188: 190-201. |
15 | LASFARGUES M, BELL A, DING Y L. In-situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications[J]. Journal of Nanoparticle Research, 2016, 18: doi: 10.1007/s11051-016-3460-8. |
16 | LUO Y, DU X Z, AWAD A, et al. Thermal energy storage enhancement of a binary molten salt via in-situ produced nanoparticles[J]. International Journal of Heat and Mass Transfer, 2017, 104: 658-664. |
17 | BA-ABBAD M M, CHAI P V, TAKRIFF M S, et al. Optimization of nickel oxide nanoparticle synthesis through the sol-gel method using Box-Behnken design[J]. Materials & Design, 2015, 86: 948-956. |
18 | ALAGIRI M, PONNUSAMY S, MUTHAMIZHCHELVAN C. Synthesis and characterization of NiO nanoparticles by sol-gel method[J]. Journal of Materials Science Materials in Electronics, 2012, 23(3): 728-732. |
19 | DANIAL A S, SALEH M M, SALIH S A, et al. On the synthesis of nickel oxide nano-particles by sol-gel technique and its electrocatalytic oxidation of glucose[J].Journal of Power Sources, 2015, 293: 101-108. |
20 | SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070. |
21 | TIZNOBAIK H, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 542-548. |
22 | TIZNOBAIK H, BANERJEE D, SHIN D. Effect of formation of 'long range' secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity[J]. International Journal of Heat and Mass Transfer, 2015, 91: 342-346. |
23 | ZHANG L D, CHEN X, WU Y T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials and Solar Cells, 2016, 157: 808-813. |
24 | BUONGIORNO J. Convective transport in nanofluids[J]. Journal of Heat Transfer, 2006, 128(3): doi: 10.1115/1.2150834. |
25 | TIZNOBAIK H, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 542-548. |
26 | HO M X, PAN C. Optimal concentration of alumina nanoparticles in molten hitec salt to maximize its specific heat capacity[J]. International Journal of Heat and Mass Transfer, 2014, 70: 174-184. |
27 | SHIN D, BANERJEE D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures[J]. Journal of Heat Transfer, 2013, 135(3): 32-81. |
[1] | Zhao LI, Baorang LI, Liu CUI, Xiaoze DU. Stability of the thermal performances of molten salt-based nanofluid [J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783. |
[2] | XIONG Feng, CHENG Xiaomin, LI Yuanyuan, DAI Pei, WANG Xiuli, ZHONG Hao. Effect of the in situ synthesis of nano-ZnO on the specific heat capacity of solar salt [J]. Energy Storage Science and Technology, 2020, 9(2): 440-447. |
[3] | MEHVISH Tariq, CHENG Xiaomin, LI yuanyuan, HUANG Yi, LI Ge, WANG Xiuli, ZHU Shilei, WAQAR Khan. Influence of carbon nanotubes and nano-alumina on the thermal performance of nitrate phase change materials for thermal storage [J]. Energy Storage Science and Technology, 2018, 7(S1): 47-53. |
[4] | WANG Caixia1, HUANG Yun1, YAO Hua1, YE Feng1, YANG Jun1, DING Yulong2. Review of recent advances in research of nanofluids [J]. Energy Storage Science and Technology, 2017, 6(1): 24-34. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 241
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 399
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||