Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1585-1592.doi: 10.19799/j.cnki.2095-4239.2020.0175
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Dongdong TIAN1(), Liwei LI1(), Yuxin YANG2, Kai WANG1
Received:
2020-05-14
Revised:
2020-05-28
Online:
2020-09-05
Published:
2020-09-08
Contact:
Liwei LI
E-mail:17854264155@163.com;ytllw@163.com
CLC Number:
Dongdong TIAN, Liwei LI, Yuxin YANG, Kai WANG. SOC of estimation of lithium battery based on IBA-PF[J]. Energy Storage Science and Technology, 2020, 9(5): 1585-1592.
Table 1
SOC and the value of each parameter of second-order Thevenin model"
SOC | R0 | R1 | R2 | C1 | C2 |
---|---|---|---|---|---|
100 | 21.07 | 4.59 | 35.26 | 610.21 | 1643.75 |
90 | 28.32 | 4.79 | 30.31 | 573.43 | 1657.84 |
80 | 27.15 | 5.23 | 34.35 | 568.76 | 1498.32 |
70 | 27.38 | 4.95 | 36.87 | 601.32 | 1381.23 |
60 | 25.67 | 4.36 | 38.45 | 670.53 | 1170.65 |
50 | 28.38 | 3.12 | 21.36 | 880.41 | 1619.23 |
40 | 29.76 | 3.34 | 22.43 | 1142.56 | 2051.45 |
30 | 30.26 | 2.89 | 27.41 | 638.36 | 1676.32 |
20 | 30.86 | 4.63 | 29.36 | 301.45 | 1521.34 |
10 | 35.76 | 12.32 | 32.34 | 32.56 | 1186.42 |
1 | 明彤彤, 王凯, 田冬冬, 等. 基于LSTM神经网络的锂离子电池荷电状态估算[J]. 广东电力, 2020, 33(3): 26-33. |
MING Tongtong, WANG Kai, TIAN Dongdong, et al. Estimation on state of charge of lithium battery based on LSTM neural network[J]. Guangdong Electric Power, 2020, 33(3): 26-33. | |
2 | 徐艳民, 李剑勇. 基于改进无迹卡尔曼滤波的电池SOC估计[J]. 汽车技术, 2018(4): 47-51. |
XU Yanmin, LI Jianyong. Estimation of SOC of battery based on improved unscented Kalman filter[J]. Automobile Technology, 2018(4): 47-51. | |
3 | 谈发明, 李秋烨, 赵俊杰. 观测模型误差不确定的锂电池SOC估计方法[J]. 电测与仪表, 2020, 57(3): 32-38. |
TAN Faming, LI Qiuye, ZHAO Junjie. Research on SOC estimation method for lithium batteries with uncertain model errors[J]. Electrical Measurement & Instrumentation, 2020, 57(3): 32-38. | |
4 | SUN Yong, MA Zilin, TANG Gongyou, et al. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter[J]. Chinese Journal of Construction Machinery, 2016, 29(4): 717-726. |
5 | 高建树, 刘浩, 王明强, 等. 改进粒子滤波算法对电动汽车电池SOC的估计[J]. 机械科学与技术, 2017, 36(9): 1428-1433. |
GAO Jianshu, LIU Hao, WANG Mingqiang, et al. An improved particle filter algorithm for SOC estimation of electric vehicle battery[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9): 1428-1433. | |
6 | 吴兰花, 杨秀芝, 郑明魁, 等. 一种基于优化粒子滤波的锂电池SOC估计算法[J]. 福州大学学报(自然科学版), 2018, 46(2): 186-191. |
WU Lanhua, YANG Xiuzhi, ZHENG Mingkui, et al. An improved particle filter algorithm for Li-ion batteries SOC estimation[J]. Journal of Fuzhou University(Natural Science Edition), 2018, 46(2): 186-191. | |
7 | ZHANG H, FRANSSEN H J H, HAN X, et al. State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter[J]. Hydrology and Earth System Sciences, 2017, 21(9): 4927-4958. |
8 | MICHEAUX H L, DUCOTTET C, FREY P. Multi-model particle filter-based tracking with switching dynamical state to study bedload transport[J]. Machine Vision & Applications, 2018(2): 1-13. |
9 | YU Jinsong, MO Baohua,TANG Diyin, et al. Remaining useful life prediction for lithium-ion batteries using a quantum particle swarm optimization-based particle filter[J]. Quality Engineering, 2017, 29(3): 536-546. |
10 | 樊波, 栾新宇, 张瑞, 等. 基于改进PNGV模型的电池SOC估计算法研究[J]. 电测与仪表, 2018, 55(20): 46-51. |
FAN Bo, LUAN Xinyu, ZHANG Rui, et al. Research on battery SOC estimation algorithm based on the improved PNGV model[J]. Electrical Measurement & Instrumentation, 2018, 55(20): 46-51. | |
11 | 于微波, 魏来, 杨听听, 等. 基于自适应卡尔曼滤波的矿用救生舱动力电池SOC估计[J]. 电测与仪表, 2016, 53(18): 118-123. |
YU Weibo, WEI Lai, YANG Tingting, etal. SOC estimation of power battery in mine-used lifesaving cabinbased on self-adaptive Kalman filtering[J]. Electrical Measurement & Instrumentation, 2016, 53(18): 118-123. | |
12 | 李俊瑶. 基于模糊粒子滤波器的夜间车辆目标识别[J]. 现代计算机, 2018(34): 25-28. |
LI Junyao. The object recognition of night vehicles based on the fuzzy particle filter[J]. Modern Computer, 2018(34): 25-28. | |
13 | PEREZ J, VALDEZ F, CASTILLO O, et al. Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm[J]. Soft Computing, 2016, 21(3): 1-19. |
14 | 赵又群, 周晓凤, 刘英杰. 基于扩展卡尔曼粒子滤波算法的锂电池SOC估计[J]. 中国机械工程, 2015, 26(3): 394-397. |
ZHAO Youqun, ZHOU Xiaofeng, LIU Yingjie. SOC estimation for Li-ion battery based on extended kalman particle filter[J]. China Mechanical Engineering, 2015, 26(3): 394-397. | |
15 | 许德刚, 赵萍. 蝙蝠算法研究及应用综述[J]. 计算机工程与应用, 2019, 55(15): 1-12, 31. |
XU Degang, ZHAO Ping. Literature survey on research and application of bat algorith[J]. Computer Engineering and Applications, 2019, 55(15): 1-12, 31. | |
16 | 江方利, 黄炜斌, 李基栋, 等. 基于改进蝙蝠算法的梯级水电站经济调度[J]. 工程科学与技术, 2018, 50(2): 84-90. |
JIANG Fangli, HUANG Weibin, LI Jidong, et al. Improved bat algorithm for economic dispatch in cascade hydropower stations[J]. Journal of Sichuan University(Engineering Science Edition), 2018, 50(2): 84-90. | |
17 | 曹洁, 杜永红, 王进花. 自适应蝙蝠算法优化PF的风力机桨距系统故障诊断方法[J]. 计算机应用与软件, 2018, 35(5): 78-84. |
CAO Jie, DU Yonghong, WANG Jinhua. Fault diagnosis method for pitch system of wind turbines based on adaptive bat Algorithm optimized PF[J]. Computer Applications and Software, 2018, 35(5): 78-84. | |
18 | YAN Wuzhao, ZHANG Bin, ZHAO Guangquan, et al. A battery management system with a lebesgue-sampling-based extended kalman filter[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3227-3236. |
19 | 陈志敏, 田梦楚, 吴盘龙, 等. 基于蝙蝠算法的粒子滤波法研究[J]. 物理学报, 2017, 66(5): 32-42. |
CHEN Zhimin, TIAN Mengchu, WU Panlong, et al. Intelligent particle filter based on bat algorithm[J]. Acta Physica Sinica, 2017, 66(5): 32-42. | |
20 | 陈志敏, 吴盘龙, 薄煜明, 等. 基于自控蝙蝠算法智能优化粒子滤波的机动目标跟踪方法[J]. 电子学报, 2018, 46(4): 886-894. |
CHEN Zhimin, WU Panlong, BO Yuming, et al. Adaptive control bat algorithm intelligent optimization particle filter for maneuvering target tracking[J]. Acta Electronica Sinica, 2018, 46(4): 886-894. | |
21 | 滕飞, 薛磊, 李修和. 基于KLD的蝙蝠算法优化自适应粒子滤波[J]. 控制与决策, 2019, 34(3): 561-566. |
TENG Fei, XUE Lei, LI Xiuhe. Adaptive particl filter with bat optimization based on KLD sampling[J]. Control and Decision, 2019, 34(3): 561-566. |
[1] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[2] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[3] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[4] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[5] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[6] | Jianhua YUAN, Yaping LIU, Ziwei ZHAO, Yu LIU, Binbin XIE, Baolin HE. SOC estimation of UAV lithium battery based on IGWO-PF algorithm [J]. Energy Storage Science and Technology, 2022, 11(5): 1601-1607. |
[7] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[8] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[9] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
[10] | Chunhui LIU, Hongbin REN. Research on active equalization of power batteries based on state of charge [J]. Energy Storage Science and Technology, 2022, 11(2): 667-672. |
[11] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. |
[12] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[13] | Yingkai WANG, Hong ZHANG, Xinghui WANG. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health [J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. |
[14] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
[15] | Shuai WANG, Hongyan MA, Jiaming DOU, Yingda ZHANG, Shengyan LI, Lujin HU. Estimation of lithium-ion battery state of charge based on UGOA-BP [J]. Energy Storage Science and Technology, 2022, 11(1): 258-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||