Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 143-149.doi: 10.19799/j.cnki.2095-4239.2020.0238
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jingjing ZHANG(), Xiaoling CUI(), Dongni ZHAO, Li YANG, Jie WANG
Received:
2020-07-08
Revised:
2020-08-03
Online:
2021-01-05
Published:
2021-01-08
CLC Number:
Jingjing ZHANG, Xiaoling CUI, Dongni ZHAO, Li YANG, Jie WANG. Effects of concentrated electrolytes on the electrode /electrolyte interface[J]. Energy Storage Science and Technology, 2021, 10(1): 143-149.
1 | ZHENG J M, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Adv Sci, 2017, 4(8): doi: 10.1002/advs.201700032. |
2 | CAO Z Y, HASHINOKUCHI M, DOI T, et al. Improved cycle performance of LiNi0.8Co0.1Mn0.1O2 positive electrode material in highly concentrated LiBF4/DMC[J]. Journal of the Electrochemical Society, 2019, 166(2): A82-A88. |
3 | 沈旻, 蒋志敏, 李南, 等. 高安全性锂离子电池电解液[J]. 储能科学与技术, 2018, 7(6): 1069-1081. |
SHEN Min, JIANG Zhimin, LI Nan, et al. High safety electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1069-1081. | |
4 | SONG H Y, JUNG M H, JEONG S K. Improving electrochemical performance at graphite negative electrodes in concentrated electrolyte solutions by addition of 1,2-dichloroethane[J]. Applied Sciences, 2019, 9(21): doi: 10.3390/app9214647. |
5 | DIEDERICHSEN K M, MCSHANE E J, MCCLOSKEY B D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries[J]. ACS Energy Letters, 2017, 2(11): 2563-2575. |
6 | FLORES E, ÅVALL G, JESCHKE S, et al. Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries[J]. Electrochimica Acta, 2017, 233: 134-141. |
7 | 马国强, 蒋志敏, 陈慧闯, 等. 基于锂盐的新型锂电池电解质研究进展[J]. 无机材料学报, 2018(7): 699-710. |
MA Guoqiang, JIANG Zhimin, CHEN Huichuang, et al. Research process on novel electrolyte of lithium-ion battery based on lithium salts[J]. Journal of Inorganic Materials, 2018, 33(7): 699-710. | |
8 | YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. J Am Chem Soc, 2014, 136(13): 5039-5046. |
9 | DOI T, MATSUMOTO R, ENDO T, et al. Extension of anodic potential window of ester-based electrolyte solutions for high-voltage lithium ion batteries[J]. ACS Applied Energy Materials, 2019, 2(11): 7728-7732. |
10 | DOI T, MASUHARA R, HASHINOKUCHI M, et al. Concentrated LiPF6/PC electrolyte solutions for 5 V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries[J]. Electrochimica Acta, 2016, 209: 219-224. |
11 | CAO Z Y, HARUTA M, DOI T, et al. Dilution effects of highly concentrated dimethyl carbonate-based electrolytes with a hydrofluoroether on charge/discharge properties of LiNi0.8Co0.1Mn0.1O2 positive electrode[J]. Journal of the Electrochemical Society, 2019, 166(16): A4005-A4013. |
12 | ZHENG Y, SOTO F A, PONCE V, et al. Localized high concentration electrolyte behavior near a lithium-metal anode surface[J]. Journal of Materials Chemistry A, 2019, 7(43): 25047-25055. |
13 | ZHOU Y M, HU J C, HE P X, et al. Corrosion suppression of aluminum metal by optimizing lithium salt concentration in solid-state imide salt-based polymer plastic crystal electrolyte membrane[J]. ACS Applied Energy Materials, 2018, 1(12): 7022-7027. |
14 | WANG J H, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2017, 3(1): 22-29. |
15 | VATAMANU J, BORODIN O. Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability[J]. J Phys Chem Lett, 2017, 8(18): 4362-4367. |
16 | ZHANG X L, KURODA D G. An ab initio molecular dynamics study of the solvation structure and ultrafast dynamics of lithium salts in organic carbonates: A comparison between linear and cyclic carbonates[J]. J Chem Phys, 2019, 150(18): doi: 10.1063/1.5088820. |
17 | LI C L, WANG P, LI S Y, et al. Active mechanism of the interphase film-forming process for an electrolyte based on a sulfolane solvent and a chelato-borate complex[J]. ACS Appl Mater Interfaces, 2018, 10(30): 25744-25753. |
18 | BORODIN O, REN X, VATAMANU J, et al. Modeling insight into battery electrolyte electrochemical stability and interfacial structure[J]. ACC Chem Res, 2017, 50(12): 2886-2894. |
19 | VATAMANU J, BORODIN O, SMITH G D. Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential[J]. Journal of Physical Chemistry C, 2012, 116(1): doi: 10.1021/jp2101539. |
20 | BORODIN O, SELF J, PERSSON K A, et al. Uncharted waters: Super-concentrated electrolytes[J]. Joule, 2020, 4(1): 69-100. |
21 | PELED E, MENKIN S. Review—SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719. |
22 | CHU Y L, SHEN Y B, GUO F, et al. Advanced characterizations of solid electrolyte interphases in lithium-ion batteries[J]. Electrochemical Energy Reviews, 2019, 3(1): 187-219. |
23 | WANG L, LUO Z, XU H, et al. Anion effects on the solvation structure and properties of imide lithium salt-based electrolytes[J]. RSC Advances, 2019, 9(71): 41837-41846. |
24 | CHEN X, ZHANG X Q, LI H R, et al. Cation-solvent, cation-anion, and solvent-solvent interactions with electrolyte solvation in lithium batteries[J]. Batteries & Supercaps, 2019, 2(2): 128-131. |
25 | MYNAM M, RAVIKUMAR B, RAI B. Molecular dynamics study of propylene carbonate based concentrated electrolyte solutions for lithium ion batteries[J]. Journal of Molecular Liquids, 2019, 278: 97-104. |
26 | WANG J H, YAMADA Y, SODEYAMA K, et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nat Commun, 2016, 7: doi: 10.1038/ncomms12032. |
27 | HOU Z G, DONG M F, XIONG Y L, et al. Formation of solid-electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure[J]. Advanced Energy Materials, 2020, 10(15): doi: 10.1002/aenm.201903665. |
28 | LIU Q, XU H L, WU F, et al. Effects of a high-concentration LiPF6-based carbonate ester electrolyte for the electrochemical performance of a high-voltage layered LiNi0.6Co0.2Mn0.2O2 cathode[J]. ACS Applied Energy Materials, 2019, 2(12): 8878-8884. |
29 | XING L D, ZHENG X W, SCHROEDER M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. ACC Chem Res, 2018, 51(2): 282-289. |
30 | YANG C Y, CHEN J, QING T T, et al. 4.0 V aqueous Li-ion batteries[J]. Joule, 2017, 1(1): 122-132. |
31 | MCOWEN D W, SEO D M, BORODIN O, et al. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms[J]. Energy Environ Sci, 2014, 7(1): 416-426. |
32 | 曾双威, 李春雷, 李世友, 等. 基于LiFSI和LiTFSI电解液对铝箔腐蚀的抑制方法[J]. 现代化工, 2019, 39(1): 34-37. |
ZENG Shuangwei, LI Chunlei, LI Shiyou, et al. Methods for suppressing aluminum foil corrosion by LiFSI and LiTFSI based electrolytes[J]. Modern Chemical Industry, 2019, 39(1): 34-37. | |
33 | MATSUMOTO K, INOUE K, NAKAHARA K, et al. Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte[J]. Journal of Power Sources, 2013, 231: 234-238. |
34 | WU C J, RATH P C, PATRA J, et al. Composition modulation of ionic liquid hybrid electrolyte for 5 V lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11(45): 42049-42056. |
35 | LU D P, TAO J H, YAN P F, et al. Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes[J]. Nano Lett, 2017, 17(3): 1602-1609. |
36 | MING J, CAO Z, WU Y Q, et al. New insight on the role of electrolyte additives in rechargeable lithium ion batteries[J]. ACS Energy Letters, 2019, 4(11): 2613-2622. |
37 | YAN C, XU R, XIAO Y, et al. Toward critical electrode/electrolyte interfaces in rechargeable batteries[J]. Advanced Functional Materials, 2020, 30(23): doi: 10.1002/adfm.201909887 |
38 | WANG M Q, HUAI L Y, HU G H, et al. Effect of LiFSI concentrations to form thickness- and modulus-controlled SEI layers on lithium metal anodes[J]. The Journal of Physical Chemistry C, 2018, 122(18): 9825-9834. |
39 | LIU T C, LIN L P, BI X X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nat Nanotechnol, 2019, 14(1): 50-56. |
[1] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[2] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[3] | Zheng ZHENG, Xiaoshuai WANG, Bin LI, Tao HUANG, Peike LI. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers [J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. |
[4] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[5] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[6] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
[7] | Qingmeng WANG, Zhi LIU, Xiaomin CHENG, Qianju CHENG, Zean LYU. Effect of In on high-temperature corrosion properties of Sn-Bi-Zn heat transfer and heat storage alloy [J]. Energy Storage Science and Technology, 2022, 11(1): 9-18. |
[8] | Yuyang LIU, Shunli WANG, Yanxin XIE, Weikang JI, Yixing ZHANG. Research on Li-ion battery modeling and SOC estimation based on online parameter identification and improved 2RC-PNGV model [J]. Energy Storage Science and Technology, 2021, 10(6): 2312-2317. |
[9] | Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode [J]. Energy Storage Science and Technology, 2021, 10(3): 914-924. |
[10] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[11] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[12] | Pu REN, Shunli WANG, Mingfang HE, Yongcun FAN, Wen CAO, Wei XIE. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading [J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. |
[13] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[14] | Yufeng XU, Jiabin YAN, Jianming HE, Zhengwei JU, Ge CHENG, Da ZHENG, Yinlong ZOU, Lei YE, Jianxin WANG. Integration and application of retried LIBs in photovoltaic and energy storage micro grid [J]. Energy Storage Science and Technology, 2021, 10(1): 349-354. |
[15] | Banghua DU, Yu ZHANG, Tiezhou WU, Yanlin HE, Zilong LI. An online identification method for equivalent model parameters of aging lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 342-348. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||