Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 50-58.doi: 10.19799/j.cnki.2095-4239.2020.0270
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yilong LIN(), Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG()
Received:
2020-08-18
Revised:
2020-09-10
Online:
2021-01-05
Published:
2021-01-08
Contact:
Yuezhong MENG
E-mail:linylong3@mail2.sysu.edu.cn;mengyzh@mail.sysu.edu.cn
CLC Number:
Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs[J]. Energy Storage Science and Technology, 2021, 10(1): 50-58.
Table 1
LIB pack cost contributions for baseline electrode processing case (cost per kW·h usable energy assumes a 70% depth-of-discharge for cycling) [7]"
成本分布 | 总成本/$·(kW·h)-1 | 化成成本/$·(kW·h)-1 |
---|---|---|
复合电极材料 | 101.7 | 145.3 |
电池收集器及分离器 | 80.2 | 114.6 |
电极处理 | 36.1 | 51.6 |
电解质 | 24.6 | 35.1 |
润湿和成型循环 | 22.6 | 32.3 |
装袋和贴标材料 | 6.7 | 9.6 |
模块硬件,电力电子和组件冷却 | 46 | 65.7 |
人工成本(电极加工和电池/封装) | 34 | 48.6 |
总计 | 351.9 | 502.8 |
Table 2
Capacity losses (room temperature) for (a) formation with charging step to the state-of-charge (SOC) stated, and (b) a subsequent cycle with charging step to 100% SOC, respectively[30]"
T/℃ | 容量衰减 (a)/% | 容量衰减 (b)/% | 总容量衰减/% | |||||
---|---|---|---|---|---|---|---|---|
NCM | Graphite | NCM | Graphite | NCM | Graphite | |||
15 | 26.4 | 9.5 | -3.9 | 0.2 | 22.5 | 9.7 | ||
25 | 19.7 | 9.9 | -0.6 | 0.5 | 19.1 | 10.4 | ||
35 | 17.2 | 10.8 | 5.1 | 0.6 | 22.3 | 11.4 | ||
45 | 15.0 | 13.3 | 8.5 | 0.8 | 23.5 | 14.1 |
1 | DUNN B, KAMATH H, TARASCON J. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
2 | LI Wei, LIU Jun, ZHAO Dongyuan. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials, 2016, 1: 16023-16039. |
3 | LIU Wen, OH Pilgun, LIU Xien, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457. |
4 | HE Yu, YU Xiqian, WANG Yanhong, et al. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency[J]. Advanced Materials, 2011, 23(42): 4938-4941. |
5 | CHO Taehyung, TANAKA M, OHNISHI H, et al. Composite nonwoven separator for lithium-ion battery: Development and characterization[J]. Journal of Power Sources, 2010, 195(13): 4272-4277. |
6 | LIN Yilong, XU Mengqing, WU Suping, et al. Insight into the mechanism of improved interfacial properties between electrodes and electrolyte in the graphite/LiNi0.6Mn0.2Co0.2O2 cell via incorporation of 4-propyl-[1,3,2]dioxathiolane-2,2-dioxide (PDTD)[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16400-16409. |
7 | WOOD D L, LI J L, DANIEL C. Prospects for reducing the processing cost of lithium ion batteries[J]. Journal of Power Sources, 2015, 275: 234-242. |
8 | LI J L, DANIEL C, WOOD D L. Materials processing for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(5): 2452-2460. |
9 | PATHAN T S, RASHID M, WALKER M, et al. Active formation of Li-ion batteries and its effect on cycle life[J]. Journal of Physics: Energy, 2019, 1(4): doi: 10.1088/2515-7655/ab2092. |
10 | ANTONOPOULOS B K, STOCK C, MAGLIA F, et al. Solid electrolyte interphase: Can faster formation at lower potentials yield better performance?[J]. Electrochimica Acta, 2018, 269(10): 331-339. |
11 | LI J L, DU Z J, RUTHER R E, et al. Toward low-cost, high-energy density, and high-power density lithium-ion batteries[J]. JOM, 2017, 69(9): 1484-1496. |
12 | DAVOODABADI A, LI J L, ZHOU H, et al. Effect of calendering and temperature on electrolyte wetting in lithium-ion battery electrodes[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.101034. |
13 | WOOD D L, LI J L, AN S J. Formation challenges of lithium-ion battery manufacturing[J]. Joule, 2019, 3(12): 2884-2888. |
14 | AN S J, LI J L, DU Z J, et al. Fast formation cycling for lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 846-852. |
15 | LEE Hsianghwan, WANG Yungyun, WAN Chichao, et al. A fast formation process for lithium batteries[J]. Journal of Power Sources, 2004, 134: 118-123. |
16 | MAO C Y, AN S J, MEYER H M, et al. Balancing formation time and electrochemical performance of high energy lithium-ion batteries[J]. Journal of Power Sources, 2018, 402: 107-115. |
17 | BHATTACHARYA S, ALPAS A T. Micromechanisms of solid electrolyte interphase formation on electrochemically cycled graphite electrodes in lithium-ion cells[J]. Carbon, 2012, 50(15): doi: 10.1016/j.carbon.2012.07.009. |
18 | WANG Renheng, LI Xinhai, WANG Zhixing. Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive[J]. Nano Energy, 2017, 34: 131-140. |
19 | XU Kang. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
20 | XU Mengqing, ZHOU Liu, DONG Yingnan, et al. Improving the performance of graphite/LiNi/0.5Mn1.5O4 cells at high voltage and elevated temperature with added Lithium bis(oxalato) borate (LiBOB)[J]. Journal of the Electrochemical Society, 2013, 160(11): A2005-A2013. |
21 | GILBERT J A, BARENO J, SPILA T, et al. Cycling behavior of NCM523/graphite lithium-ion cells in the 3~4.4 V range: Diagnostic studies of full cells and harvested electrodes[J]. Journal of the Electrochemical Society, 2016, 164(1): A6054-A6065. |
22 | GLAZIER S L, LI J, LOULI A J, et al. An analysis of artificial and natural graphite in lithium ion pouch cells using ultra-high precision coulometry, isothermal microcalorimetry, gas evolution, long term cycling and pressure measurements[J]. Journal of the Electrochemical Society, 2017, 164(14): A3545-A3555. |
23 | AGUBRA V A, FERGUS J W. The formation and stability of the solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268(5): 153-162. |
24 | LOPEZ I R, LAIN M J, KENDRICK E. Optimisation of formation and conditioning protocols for lithium ion EV batteries[J]. Batteries & Supercaps, 2020, 3(9): 900-909. |
25 | 杜强, 张一鸣, 田爽, 等. 锂离子电池SEI膜形成机理及化成工艺影响[J]. 电源技术, 2018, 42(12): 1922-1926. |
DU Qiang, ZHANG Yiming, TIAN Shuang, et al. Formation mechanism of solid electrolyte interphase (SEI) and effect of formation process on it in lithium ion batteries[J]. Chinese Journal of Power Sources, 2018, 42(12): 1922-1926. | |
26 | 杨娟. 锂离子电池化成条件对化成效果的影响[J]. 河南科技, 2017(19): 139-140. |
YANG Juan. Influence of formation conditions of lithium ion battery on formation efficiency[J]. Henan Science and Technology, 2017(19): 139-140. | |
27 | DAVOODABADI A, LI J L, LIANG Y F, et al. Analysis of electrolyte imbibition through lithium-ion battery electrodes[J]. Journal of Power Sources, 2019, 424: 193-203. |
28 | JEON D H. Wettability in electrodes and its impact on the performance of lithium-ion batteries[J]. Energy Storage Materials, 2019, 18: 139-147. |
29 | HE Yanbing, TANG Zhiyuan, SONG Quansheng, et al. Effects of temperature on the formation of graphite/LiCoO2 batteries[J]. Journal of the Electrochemical Society, 2008, 155(7): A481-A487. |
30 | GERMAN F, HINTENNACH A, LACROIX A, et al. Influence of temperature and upper cut-off voltage on the formation of lithium-ion cells[J]. Journal of Power Sources, 2014, 264: 100-107. |
31 | YAN Chong, YAO Yuxing, CAI Wenlong, et al. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 335-338. |
32 | HUANG Chenghuan, HUANG Kelong, WANG Haiyan, et al. The effect of solid electrolyte interface formation conditions on the aging performance of Li-ion cells[J]. Journal of Solid State Electrochemistry, 2011, 15(9): 1987-1995. |
33 | CANNARELLA J, ARNOLD C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. Journal of Power Sources, 2014, 245: 745-751. |
34 | PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery—A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807. |
35 | MAO Z Y, FARKHONDEH M, PRITZKER M, et al. Calendar aging and gas generation in commercial graphite/NMC-LMO lithium-ion pouch cell[J]. Journal of the Electrochemical Society, 2017, 164(14): A3469-A3483. |
36 | RUBINO R S, GAN Hong, TAKEUCHI E S. A study of capacity fade in cylindrical and prismatic lithium-ion batteries[J]. Journal of the Electrochemical Society, 2001 148(9): A1029-A1033. |
37 | PEABODY C, ARNOLD C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196(19): 8147-8153. |
38 | HEIMES H H, OFFERMANNS C, MOHSSENI A, et al. The effects of mechanical and thermal loads during lithium-ion pouch cell formation and their impacts on the process time[J]. Energy Technology, 2020, 8(2): doi: 10.1002/ente.201900118. |
39 | STEINHAUER M, RISSE S, WAGNER N, et al. Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2017, 228: 652-658. |
40 | WANG A P, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. Computational Materials, 2018, 3(4): 1-26. |
41 | OTA H, SATO T, SUZUKI H, et al. TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries[J]. Journal of Power Sources, 2001, 97: 107-113. |
42 | ZHU Taohe, HU Qiyang, YAN Guochun, et al. Manipulating the composition and structure of solid electrolyte interphase at graphite anode by adjusting the formation condition[J]. Energy Technology, 2019, 7(9): 1900273-1900281. |
[1] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[2] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[3] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[4] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[5] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[6] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
[7] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[8] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[9] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[10] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
[11] | ZHOU Xiaolong, OU Xuewu, LIU Qirong, TANG Yongbing. Research progress on dual-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 551-568. |
[12] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
[13] | CHEN Xiaoxia, LIU Kai, WANG Baoguo. Research on high-safety electrolytes and their application in lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 583-592. |
[14] | GUAN Yibiao, SHEN Jinran, LI Kangle, GUAN Zhaoruxin, ZHOU Shuqin, GUO Cuijing, XU Bin. Application of graphene conductive additives in cathodes of lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(1): 70-81. |
[15] | LIU Xingwen, HE Jinxin, WANG Hailin, JIN Chengyou, MIAO Yonghua, XUE Chi. Preparation and electrochemical performance of F-doped SiO@C composite material [J]. Energy Storage Science and Technology, 2019, 8(S1): 56-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||