Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 59-67.doi: 10.19799/j.cnki.2095-4239.2020.0330
• Energy Storage Materials and Devices • Previous Articles Next Articles
Can WANG1(), Pan MA1(), Guoliang ZHU2, Yongchao MA3, Pengcheng JI1, Shuimiao WEI1, Jian ZHAO1, Zhishui YU1
Received:
2020-09-26
Revised:
2020-10-15
Online:
2021-01-05
Published:
2021-01-08
Contact:
Pan MA
E-mail:2074578281@qq.com;mapan@sues.edu.cn
CLC Number:
Can WANG, Pan MA, Guoliang ZHU, Yongchao MA, Pengcheng JI, Shuimiao WEI, Jian ZHAO, Zhishui YU. LIB long life graphite electrode: State-of-art development and perspective[J]. Energy Storage Science and Technology, 2021, 10(1): 59-67.
1 | LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
2 | GOODENOUGH J B. Energy storage materials: A perspective[J]. Energy Storage Materials, 2015, 1: 158-161. |
3 | 克里斯汀·朱利恩, 阿肖克·维志, 卡里姆·扎赫伯. 锂电池科学与技术[M]. 北京: 化学工业出版社, 2018. |
JULIEN C, VIJH A, ZAGHIB K. Lithium Batteries: Science and Technology[M]. Beijing: Chemical Industry Press, 2018. | |
4 | LEE Gibaek, KIM Sudeok, KIM Sunkyu, et al. SiO2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes[J]. Advanced Functional Materials, 2017, 27(39): doi:10.1002/adfm.201703538. |
5 | VETTER J, NOVAK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281. |
6 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. |
WANG Qiyu, WANG Shuo, ZHANG Jienan, et al. Overview of failure analysis of lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. | |
7 | BARRE A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689. |
8 | HAN Xuebing, OUYANG Minggao, LU Languang, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54. |
9 | SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. |
10 | DINKELACKER F, MARZAK P, YUN Jeongsik, et al. Multistage mechanism of lithium intercalation into graphite anodes in the presence of the solid electrolyte interface[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 14063-14069. |
11 | AGUBRA V A, FERGUS J W. The formation and stability of the solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268: 153-162. |
12 | 赵星. 锂离子动力电池电极材料失效分析及电极界面特性研究[D]. 北京: 中国矿业大学, 2015. |
ZHAO Xing. Failure analysis and electrode interface charaderistics on the electrode materials for lithium-ion power batteries[D]. Beijing: China University of Mining and Technology, 2015. | |
13 | YAN Chong, YAO Yuxing, CAI Wenlong, et al. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 335-338. |
14 | CHEN Kunfeng, YANG Hong, LIANG Feng, et al. Microwave-irradiation-assisted combustion toward modified graphite as lithium ion battery anode[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 909-914. |
15 | LIN Na, JIA Zhe, WANG Zhihui, et al. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy[J]. Journal of Power Sources, 2017, 365: 235-239. |
16 | LI Xianglin, HUANG Jing, FAGHIRI A. A critical review of macroscopic modeling studies on LiO2 and Li-air batteries using organic electrolyte: Challenges and opportunities[J]. Journal of Power Sources, 2016, 332: 420-446. |
17 | DING Yajun, LI Yuejiao, WU Min, et al. Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 batteries[J]. Energy Storage Materials, 2020, 1308: 470-491. |
18 | KUMAR R, LIU J, HWANG J Y, et al. Recent research trends in Li-S batteries[J]. Journal of Materials Chemistry A, 2018, 6(25): 11582-11605. |
19 | SHAO Qinjun, WU Zhongshuai, CHEN Jian. Two-dimensional materials for advanced Li-S batteries[J]. Energy Storage Materials, 2019, 22: 284-310. |
20 | 杨丽杰. 锂离子电池石墨类碳负极的容量衰减机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
YANG Lijie. Research on capacity loss mechanisms of graphitic carbon anodes in lithium[D]. Harbin: Harbin Institute of Technology, 2014. | |
21 | BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. |
22 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
23 | ZHU Fuliang, YANG Zhi, ZHAO Jinping. Microwave assisted preparation of expanded graphite/sulfur composites as cathodes for Li-S batteries[J]. New Carbon Materials, 2016, 31: 199-204. |
24 | VOIRY D, YANG J, KUPFERBERG J, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science, 2016, 353: 1413-1416. |
25 | HENG Shuai, SHAN Xiaojian, WANG Wei, et al. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries[J]. Carbon, 2020, 159: 390-400. |
26 | WANG Zaisheng, XING Lidan, LI Jianhui, et al. Trimethyl borate as an electrolyte additive for high potential layered cathode with concurrent improvement of rate capability and cyclic stability[J]. Electrochimica Acta, 2015, 184: 40-46. |
27 | CHENG Xinbing, ZHANG Rui, ZHAO Chenzi, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473 |
28 | GONG Xiaohui, ZHENG Yuanbo, ZHENG Jiang, et al. Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries[J]. ChemElectroChem, 2020, 7(6): 1465-1472. |
29 | WU Yuping, JIANG Changyin, WAN Chunrong, et al. Modified natural graphite as anode material for lithium ion batteries[J]. Journal of Power Sources, 2002, 111(2): 329-334. |
30 | FU Lijun, LIU Hao, LI Chilin, et al. Surface modifications of electrode materials for lithium ion batteries[J]. Solid State Sciences, 2006, 8: 113-128. |
31 | GAO Jie, FU Lijun, ZHANG Hanping, et al. Suppression of PC decomposition at the surface of graphitic carbon by Cu coating[J]. Electrochemistry Communications, 2006, 8(11): 1726-1730. |
32 | NOBILI F, MANCINI M, DSOKE S, et al. Low-temperature behavior of graphite-tin composite anodes for Li-ion batteries[J]. Journal of Power Sources, 2010, 195(20): 7090-7097. |
33 | ARAVINDAN V, GNANARAJ J, MADHAVI S, et al. Lithium-ion conducting electrolyte salts for lithium batteries[J]. Chemistry, 2011, 17(51): 14326-14346. |
34 | RYOU Myunghyun, HAN Gibeom, LEE Yongmin, et al. Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells[J]. Electrochim Acta, 2010, 55(6): 2073-2077. |
35 | XU Yun, LIU Jiali, ZHOU Lan, et al. FEC as the additive of 5 V electrolyte and its electrochemical performance for LiNi0.5Mn1.5O4[J]. Journal of Electroanalytical Chemistry, 2017, 791: 109-116. |
36 | BERHAUT C, LEMORDANT D, PORION P. et al. Ionic association analysis of LiTDI, LiFSI and LiPF6 in EC/DMC for better Li-ion battery performances[J]. RSC Advances, 2019, 9(8): 4599-4608. |
37 | KANG Sungjin, PARK Kisung, PARK Seonghyo, et al. Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries[J]. Electrochimica Acta, 2018, 259: 949-954. |
38 | YAMADA Y, WANG Jianhui, KO Seongjae, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019: 269-280. |
39 | XIANG Li, OU Xuewu, WANG Xingyong, et al. Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery[J]. Angewandte Chemie International Edition, 2020, 59(41): 17924-17930. |
40 | CHEN Zhongyi, LIU Yan, ZHANG Yanzong, et al. Ultrafine layered graphite as an anode material for lithium ion batteries[J]. Materials Letters, 2018, 229: 134-137. |
41 | GOLMON S, MAUTE K, DUNN M. A design optimization methodology for Li-ion batteries[J]. Journal of Power Sources, 2014; 253: 239-250. |
42 | DAI Yiling. On graded electrode porosity as a design tool for improving the energy density of batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A406-416. |
43 | HEUBNER C, NICKOL A, SEEBA J, et al. Michaelis, understanding thickness and porosity effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2-based cathodes for high energy Li-ion batteries[J]. Journal of Power Sources, 2019, 419: 119-126. |
44 | KUANG Yudi, CHEN Chaoji, KIRSCH D, et al. Thick electrode batteries: Principles, opportunities, and challenges[J]. Advanced Energy Materials, 2019, 9(33): doi:10.1002/aenm.201901457. |
45 | 邵丹, 王媛, 唐贤文, 等. 锂离子电池用新型黏结剂研究进展[J]. 化工新型材料, 2018, 46(11): 252-255. |
SHAO Dan, WANG Yuan, TANG Xianwen, et al. Research progress of new binder for lithium ion battery[J]. New Chemical Materials, 2018, 46(11): 252-255. | |
46 | CHANG W J, LEE G H, CHEON Y J, et al. Direct observation of carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) binders distribution in practical graphite anodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 41330-41337. |
47 | 吴春林. 锂离子电池水性黏结剂的制备与性能研究[J]. 四川化工, 2020, 23(4): 1-3+7. |
WU Chunlin. Preparation and properties of water-based binder for lithium ion batteries[J]. Sichuan Chemical Industry, 2020, 23(4): 1-3+7. | |
48 | ZHANG S, XU K, JOW T R. Evaluation on a water-based binder for the graphite anode of Li-ion batteries[J]. Journal of Power Sources, 2004, 138(1/2): 226-231. |
49 | WANG Yan, ZHANG Li, QI Qunting, et al. Tailoring the interplay between ternary composite binder and graphite anodes toward high-rate and long-life Li-ion batteries[J]. Electrochemical Acta, 2016, 191: 70-80. |
50 | HUANG Shu, REN Jianguo, LIU Rong, et al. Enhanced electrochemical properties of a natural graphite anode using a promising crosslinked ionomer binder in Li-ion batteries[J]. New Journal of Chemistry, 2017, 41(20): 11759-11765. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[4] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[5] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[6] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[7] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
[8] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[9] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
[10] | Kuining LI, Yuncheng XIE, Yi XIE, Qinghua BAI, Jintao ZHENG. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model [J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162. |
[11] | Jinhui GAO, Yunzhu CHEN, Yang YANG, Fanhui MENG, Hong XU, Li WANG, Jiang ZHOU, Xiangming HE. Research progress of reference electrode for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 987-994. |
[12] | Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes [J]. Energy Storage Science and Technology, 2021, 10(2): 425-431. |
[13] | Rongyan WEN, Zhihao GAO, Shulin MEN, Zuoqiang DAI, Jianmin ZHANG. Research progress of polyvinylidene fluoride based gel polymer electrolyte [J]. Energy Storage Science and Technology, 2021, 10(1): 40-49. |
[14] | Youman ZHAO, Xiaobo YAN, Hongkun DUAN, Zewei CHEN. Exploring mechanism of carbon nanotubes as conductive agent for improving performance of a silicon/carbon anode in LIB [J]. Energy Storage Science and Technology, 2021, 10(1): 118-127. |
[15] | Yan FENG, Lili ZHENG, Zuoqiang DAI, Dong WANG, Longzhou JIA, Tao YIN. Thermal characteristics of 18650 ternary Li-ion battery during discharge [J]. Energy Storage Science and Technology, 2021, 10(1): 319-325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||