Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 59-67.doi: 10.19799/j.cnki.2095-4239.2020.0330
• Energy Storage Materials and Devices • Previous Articles Next Articles
					
													Can WANG1( ), Pan MA1(
), Pan MA1( ), Guoliang ZHU2, Yongchao MA3, Pengcheng JI1, Shuimiao WEI1, Jian ZHAO1, Zhishui YU1
), Guoliang ZHU2, Yongchao MA3, Pengcheng JI1, Shuimiao WEI1, Jian ZHAO1, Zhishui YU1
												  
						
						
						
					
				
Received:2020-09-26
															
							
																	Revised:2020-10-15
															
							
															
							
																	Online:2021-01-05
															
							
																	Published:2021-01-08
															
						Contact:
								Pan MA   
																	E-mail:2074578281@qq.com;mapan@sues.edu.cn
																					CLC Number:
Can WANG, Pan MA, Guoliang ZHU, Yongchao MA, Pengcheng JI, Shuimiao WEI, Jian ZHAO, Zhishui YU. LIB long life graphite electrode: State-of-art development and perspective[J]. Energy Storage Science and Technology, 2021, 10(1): 59-67.
| 1 | LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. | 
| 2 | GOODENOUGH J B. Energy storage materials: A perspective[J]. Energy Storage Materials, 2015, 1: 158-161. | 
| 3 | 克里斯汀·朱利恩, 阿肖克·维志, 卡里姆·扎赫伯. 锂电池科学与技术[M]. 北京: 化学工业出版社, 2018. | 
| JULIEN C, VIJH A, ZAGHIB K. Lithium Batteries: Science and Technology[M]. Beijing: Chemical Industry Press, 2018. | |
| 4 | LEE Gibaek, KIM Sudeok, KIM Sunkyu, et al. SiO2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes[J]. Advanced Functional Materials, 2017, 27(39): doi:10.1002/adfm.201703538. | 
| 5 | VETTER J, NOVAK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281. | 
| 6 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. | 
| WANG Qiyu, WANG Shuo, ZHANG Jienan, et al. Overview of failure analysis of lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. | |
| 7 | BARRE A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689. | 
| 8 | HAN Xuebing, OUYANG Minggao, LU Languang, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54. | 
| 9 | SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. | 
| 10 | DINKELACKER F, MARZAK P, YUN Jeongsik, et al. Multistage mechanism of lithium intercalation into graphite anodes in the presence of the solid electrolyte interface[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 14063-14069. | 
| 11 | AGUBRA V A, FERGUS J W. The formation and stability of the solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268: 153-162. | 
| 12 | 赵星. 锂离子动力电池电极材料失效分析及电极界面特性研究[D]. 北京: 中国矿业大学, 2015. | 
| ZHAO Xing. Failure analysis and electrode interface charaderistics on the electrode materials for lithium-ion power batteries[D]. Beijing: China University of Mining and Technology, 2015. | |
| 13 | YAN Chong, YAO Yuxing, CAI Wenlong, et al. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 335-338. | 
| 14 | CHEN Kunfeng, YANG Hong, LIANG Feng, et al. Microwave-irradiation-assisted combustion toward modified graphite as lithium ion battery anode[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 909-914. | 
| 15 | LIN Na, JIA Zhe, WANG Zhihui, et al. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy[J]. Journal of Power Sources, 2017, 365: 235-239. | 
| 16 | LI Xianglin, HUANG Jing, FAGHIRI A. A critical review of macroscopic modeling studies on LiO2 and Li-air batteries using organic electrolyte: Challenges and opportunities[J]. Journal of Power Sources, 2016, 332: 420-446. | 
| 17 | DING Yajun, LI Yuejiao, WU Min, et al. Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 batteries[J]. Energy Storage Materials, 2020, 1308: 470-491. | 
| 18 | KUMAR R, LIU J, HWANG J Y, et al. Recent research trends in Li-S batteries[J]. Journal of Materials Chemistry A, 2018, 6(25): 11582-11605. | 
| 19 | SHAO Qinjun, WU Zhongshuai, CHEN Jian. Two-dimensional materials for advanced Li-S batteries[J]. Energy Storage Materials, 2019, 22: 284-310. | 
| 20 | 杨丽杰. 锂离子电池石墨类碳负极的容量衰减机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. | 
| YANG Lijie. Research on capacity loss mechanisms of graphitic carbon anodes in lithium[D]. Harbin: Harbin Institute of Technology, 2014. | |
| 21 | BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. | 
| 22 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. | 
| 23 | ZHU Fuliang, YANG Zhi, ZHAO Jinping. Microwave assisted preparation of expanded graphite/sulfur composites as cathodes for Li-S batteries[J]. New Carbon Materials, 2016, 31: 199-204. | 
| 24 | VOIRY D, YANG J, KUPFERBERG J, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science, 2016, 353: 1413-1416. | 
| 25 | HENG Shuai, SHAN Xiaojian, WANG Wei, et al. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries[J]. Carbon, 2020, 159: 390-400. | 
| 26 | WANG Zaisheng, XING Lidan, LI Jianhui, et al. Trimethyl borate as an electrolyte additive for high potential layered cathode with concurrent improvement of rate capability and cyclic stability[J]. Electrochimica Acta, 2015, 184: 40-46. | 
| 27 | CHENG Xinbing, ZHANG Rui, ZHAO Chenzi, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473 | 
| 28 | GONG Xiaohui, ZHENG Yuanbo, ZHENG Jiang, et al. Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries[J]. ChemElectroChem, 2020, 7(6): 1465-1472. | 
| 29 | WU Yuping, JIANG Changyin, WAN Chunrong, et al. Modified natural graphite as anode material for lithium ion batteries[J]. Journal of Power Sources, 2002, 111(2): 329-334. | 
| 30 | FU Lijun, LIU Hao, LI Chilin, et al. Surface modifications of electrode materials for lithium ion batteries[J]. Solid State Sciences, 2006, 8: 113-128. | 
| 31 | GAO Jie, FU Lijun, ZHANG Hanping, et al. Suppression of PC decomposition at the surface of graphitic carbon by Cu coating[J]. Electrochemistry Communications, 2006, 8(11): 1726-1730. | 
| 32 | NOBILI F, MANCINI M, DSOKE S, et al. Low-temperature behavior of graphite-tin composite anodes for Li-ion batteries[J]. Journal of Power Sources, 2010, 195(20): 7090-7097. | 
| 33 | ARAVINDAN V, GNANARAJ J, MADHAVI S, et al. Lithium-ion conducting electrolyte salts for lithium batteries[J]. Chemistry, 2011, 17(51): 14326-14346. | 
| 34 | RYOU Myunghyun, HAN Gibeom, LEE Yongmin, et al. Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells[J]. Electrochim Acta, 2010, 55(6): 2073-2077. | 
| 35 | XU Yun, LIU Jiali, ZHOU Lan, et al. FEC as the additive of 5 V electrolyte and its electrochemical performance for LiNi0.5Mn1.5O4[J]. Journal of Electroanalytical Chemistry, 2017, 791: 109-116. | 
| 36 | BERHAUT C, LEMORDANT D, PORION P. et al. Ionic association analysis of LiTDI, LiFSI and LiPF6 in EC/DMC for better Li-ion battery performances[J]. RSC Advances, 2019, 9(8): 4599-4608. | 
| 37 | KANG Sungjin, PARK Kisung, PARK Seonghyo, et al. Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries[J]. Electrochimica Acta, 2018, 259: 949-954. | 
| 38 | YAMADA Y, WANG Jianhui, KO Seongjae, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019: 269-280. | 
| 39 | XIANG Li, OU Xuewu, WANG Xingyong, et al. Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery[J]. Angewandte Chemie International Edition, 2020, 59(41): 17924-17930. | 
| 40 | CHEN Zhongyi, LIU Yan, ZHANG Yanzong, et al. Ultrafine layered graphite as an anode material for lithium ion batteries[J]. Materials Letters, 2018, 229: 134-137. | 
| 41 | GOLMON S, MAUTE K, DUNN M. A design optimization methodology for Li-ion batteries[J]. Journal of Power Sources, 2014; 253: 239-250. | 
| 42 | DAI Yiling. On graded electrode porosity as a design tool for improving the energy density of batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A406-416. | 
| 43 | HEUBNER C, NICKOL A, SEEBA J, et al. Michaelis, understanding thickness and porosity effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2-based cathodes for high energy Li-ion batteries[J]. Journal of Power Sources, 2019, 419: 119-126. | 
| 44 | KUANG Yudi, CHEN Chaoji, KIRSCH D, et al. Thick electrode batteries: Principles, opportunities, and challenges[J]. Advanced Energy Materials, 2019, 9(33): doi:10.1002/aenm.201901457. | 
| 45 | 邵丹, 王媛, 唐贤文, 等. 锂离子电池用新型黏结剂研究进展[J]. 化工新型材料, 2018, 46(11): 252-255. | 
| SHAO Dan, WANG Yuan, TANG Xianwen, et al. Research progress of new binder for lithium ion battery[J]. New Chemical Materials, 2018, 46(11): 252-255. | |
| 46 | CHANG W J, LEE G H, CHEON Y J, et al. Direct observation of carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) binders distribution in practical graphite anodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 41330-41337. | 
| 47 | 吴春林. 锂离子电池水性黏结剂的制备与性能研究[J]. 四川化工, 2020, 23(4): 1-3+7. | 
| WU Chunlin. Preparation and properties of water-based binder for lithium ion batteries[J]. Sichuan Chemical Industry, 2020, 23(4): 1-3+7. | |
| 48 | ZHANG S, XU K, JOW T R. Evaluation on a water-based binder for the graphite anode of Li-ion batteries[J]. Journal of Power Sources, 2004, 138(1/2): 226-231. | 
| 49 | WANG Yan, ZHANG Li, QI Qunting, et al. Tailoring the interplay between ternary composite binder and graphite anodes toward high-rate and long-life Li-ion batteries[J]. Electrochemical Acta, 2016, 191: 70-80. | 
| 50 | HUANG Shu, REN Jianguo, LIU Rong, et al. Enhanced electrochemical properties of a natural graphite anode using a promising crosslinked ionomer binder in Li-ion batteries[J]. New Journal of Chemistry, 2017, 41(20): 11759-11765. | 
| [1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. | 
| [2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. | 
| [3] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. | 
| [4] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. | 
| [5] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. | 
| [6] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. | 
| [7] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. | 
| [8] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. | 
| [9] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. | 
| [10] | Kuining LI, Yuncheng XIE, Yi XIE, Qinghua BAI, Jintao ZHENG. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model [J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162. | 
| [11] | Jinhui GAO, Yunzhu CHEN, Yang YANG, Fanhui MENG, Hong XU, Li WANG, Jiang ZHOU, Xiangming HE. Research progress of reference electrode for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 987-994. | 
| [12] | Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes [J]. Energy Storage Science and Technology, 2021, 10(2): 425-431. | 
| [13] | Rongyan WEN, Zhihao GAO, Shulin MEN, Zuoqiang DAI, Jianmin ZHANG. Research progress of polyvinylidene fluoride based gel polymer electrolyte [J]. Energy Storage Science and Technology, 2021, 10(1): 40-49. | 
| [14] | Youman ZHAO, Xiaobo YAN, Hongkun DUAN, Zewei CHEN. Exploring mechanism of carbon nanotubes as conductive agent for improving performance of a silicon/carbon anode in LIB [J]. Energy Storage Science and Technology, 2021, 10(1): 118-127. | 
| [15] | Yan FENG, Lili ZHENG, Zuoqiang DAI, Dong WANG, Longzhou JIA, Tao YIN. Thermal characteristics of 18650 ternary Li-ion battery during discharge [J]. Energy Storage Science and Technology, 2021, 10(1): 319-325. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
