Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1933-1939.doi: 10.19799/j.cnki.2095-4239.2020.0166
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xincheng LIANG1(), Mian ZHANG1, Guojun HUANG2
Received:
2020-05-05
Revised:
2020-06-14
Online:
2020-11-05
Published:
2020-10-28
CLC Number:
Xincheng LIANG, Mian ZHANG, Guojun HUANG. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939.
1 | 唐葆君, 王翔宇, 王彬, 等. 中国新能源汽车行业发展水平分析及展望[J]. 北京理工大学学报(社会科学版), 2019, 21(2): 6-11. |
TANG Baojun, WANG Xiangyu, WANG Bin, et al. Analysis and prospect of China's new energy vehicle industry development level[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2019, 21(2): 6-11. | |
2 | RITCHIE A, HOWARD W. Recent developments and likely advances in lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 809-812. |
3 | YE Yonghuang, Liphuat SAW, SHI Yixiang, et al. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging[J]. Applied Thermal Engineering, 2015, 86: 281-291. |
4 | LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
5 | 华旸, 周思达, 何瑢, 等. 用锂离子动力电池组均衡管理系统研究进展[J]. 机械工程学报, 2019, 55(20): 73-84. |
HUA Yang, ZHOU Sida, HE Rong, et al. Review on lithium-ion battery equilibrium technology applied for EVs[J]. Journal of Mechanical Engineering, 2019, 55(20): 73-84. | |
6 | 吕杰, 宋文吉, 冯自平. 电池管理系统的设计与实现[J]. 电池, 2019, 49(6): 499-501. |
Jie LYU, SONG Wenji, FENG Ziping. Design and implementation of battery management system[J]. Battery Bimonthly, 2019, 49(6): 499-501. | |
7 | WANG C Y, GU W B, LIAW B Y. Micro-macroscopic coupled modeling of batteries and fuel cells (I): Model development[J]. Journal of Electrochemical Society, 1998, 145(10): 3407-3417. |
8 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell[J]. Journal of the Electrochemical Society,1993,140(6) : 1526-1533. |
9 | SUNG Woosuk, SHIN Cheeburm. Electrochemical model of a lithium-ion battery implemented into an automotive battery management system[J]. Computers and Chemical Engineering, 2015, 76: 87-97. |
10 | ZOU Changfu, MANZIE C, NESIC D. A framework for simplification of PDE-based lithium-ion battery models[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1594-1609. |
11 | LI Junfu, WANG Lixin, Chao LYU, et al. State of charge estimation based on a simplified electrochemical model for a single LiCoO2 battery and battery pack[J]. Energy, 2017, 133: 527-583. |
12 | TSANG Kaiming, SUN Liqun, CHAN Wailok. Identification and modelling of lithium ion battery[J]. Energy Conversion and Management, 2010, 51(1): 2857-2862. |
13 | ZHANG Lei, WANG Zhenpo, HU Xiaosong, et al. A comparative study of equivalent circuit models of ultracapacitors for electric vehicles[J]. Journal of Power Sources, 2015, 274: 899-906 |
14 | HU Xiaosong, LI Shengbo, PENG Huei. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-367. |
15 | ZOU Yuan, LI Shengbo, SHAO Bing, et al. State-space model with non-integer order derivatives for lithium-ion battery[J]. Applied Energy, 2016, 161: 330-336. |
16 | 鲁伟, 续丹, 杨晴霞, 等. 锂电池分数阶建模与荷电状态研究[J]. 西安交通大学学报, 2017, 51(7): 124-129. |
LU Wei, XU Dan, YANG Qingxia. Fractional model and state of charge of lithium battery[J]. Journal of Xi'an Jiaotong University, 2017, 51(7): 124-129. | |
17 | ZHANG Caiping, JIANG Jiuchun, GAO Yang, et al. Charging optimization in lithium-ion batteries based on temperature rise and charge time[J]. Applied Energy, 2017, 194: 569-577. |
18 | 孙培坤. 电动汽车动力电池健康状态估计方法研究[D]. 北京: 北京理工大学, 2016. |
SUN Peikun. Research of state of health estimation method for electric vehicle lithium-ion power batter[D]. Beijing: Beijing Institute of Technology, 2016. | |
19 | WANG Junping, CHEN Quanshi, CAO Binggang. Support vector machine based battery model for electric vehicles[J]. Energy Conversion and Management, 2006, 47(7): 858-864. |
20 | GOMEZ J, NELSON R, KALU E E, et al. Equivalent circuit model parameters of a high-power li-ion battery: thermal and state of charge effects[J]. Journal of Power Sources, 2011, 196(10): 4826-4831. |
21 | BARONTI F, FANTECHI G, LEONARDI E, et al. Effective modeling of temperature effects on lithium polymer cells[C]//IEEE International Conference on Electronics, Circuits, and Systems, IEEE, 2010: 990-993. |
22 | 李逢兵, 谢开贵, 张雪松, 等. 基于寿命量化的混合储能系统协调控制参数优化[J]. 电力系统自动化, 2014, 38(1): 1-5. |
LI Fengbing, XIE Kaigui, ZHANG Xuesong, et al. Optimization of coordinated control parameters for hybrid energy storage system based on life quantization[J]. Automation of Electric Power System, 2014, 38(1): 1-5. | |
23 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
24 | 董缇, 彭鹏, 曹文炅, 等. 锂离子电池热管理和安全性研究[J]. 新能源进展, 2019, 7(1): 50-59. |
DONG Ti, PENG Peng, CAO Wenjiong, et al. Research on thermal management and safety of Li-ion batteries[J]. Advance in New and Renewable Energy, 2019, 7(1): 50-59. | |
25 | 雷治国, 张承宁, 雷学国, 等. 电动汽车用锂离子电池热特性和热模型研究[J]. 电工电能新技术, 2015, 34(12): 59-64. |
LEI Zhiguo, ZHANG Chengning, LEI Xueguo, et al. Research on thermal characteristics and thermal model of EVs lithium-ion battery[J]. Advance Technology of Electrical Engineering and Energy, 2015, 34(12): 59-64. | |
26 | GÜMÜSSU E, Ö EKICI, KÖKSAL M. 3-D CFD modeling and experimental testing of thermal behavior of a Li-ion battery[J]. Applied Thermal Engineering, 2017, 120: 484-495. |
27 | 宋丽, 魏学哲, 戴海峰, 等. 锂离子电池单体热模型研究动态[J]. 汽车工程, 2013, 35(3): 285-291. |
SONG Li, WEI Xuezhe, DAI Haifeng, et al. A review on the research of thermal models for lithium ion battery cell[J]. Automotive Engineering, 2013, 35(3): 285-291. | |
28 | KIM Uiseong, SHIN Cheeburm, KIM Chisu. Effect of electrode configuration on the thermal behavior of a lithium-polymer battery[J]. Journal of Power Sources, 2008, 180(2): 909-916. |
29 | GOLI P, LEGEDZA S, DHAR A, et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries[J]. Journal of Power Sources, 2014, 248: 37-43. |
30 | WANG Qing, SHAFFER C E, SINHA P K. Controlling factors of cell design on large-format Li-ion battery safety during nail penetration[J]. Frontiers in Energy Research, 2015, 3: 35. |
31 | HU Xiao, ASGARI S, YAVUZ I, et al. A transient reduced order model for battery thermal management based on singular value decomposition[C]//Proceedings of 2014 IEEE Energy Conversion Congress and Exposition (ECCE). Pittsburgh: IEEE, 2014: 3971-3976. |
32 | RICHARDSON R R, ZHAO Shi, HOWEY D A. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries (I): Low-order thermal modeling[J]. Journal of Power Sources, 2016, 326: 377-388. |
33 | XU Meng, ZHANG Zhuqian, WANG Xia, et al. A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process[J]. Energy, 2015, 80: 303-317. |
34 | ALIPOUR M, ESEN E, KIZILEL R. Investigation of 3-D multilayer approach in predicting the thermal behavior of 20 A·h Li-ion cells[J]. Applied Thermal Engineering, 2019, 153: 620-632. |
35 | LIN Xinfan, PEREZ H E, MOHAN S, et al. A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of Power Sources, 2014, 257: 1-11. |
36 | BASU S, HARIHARAN K S, KOLAKE S M, et al. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J]. Applied Energy, 2016, 181: 1-13. |
37 | 李军求, 吴朴恩, 张承宁. 电动汽车动力电池热管理技术的研究与实现[J]. 汽车工程, 2016, 38(1): 22-27. |
LI Junqiu, WU Puen, ZHANG Chengning. Study and implementation of thermal management technology for the power batteries of electric vehicles[J]. Automotive Engineering, 2016, 38(1): 22-27. | |
38 | WANG Yujie, ZHANG Chenbin, CHEN Zonghai. On-line battery state-of-charge estimation based on an integrated estimator[J]. Applied Energy, 2017, 185: 2026-2032. |
39 | REN Hongbin, ZHAO Yuzhuang, CHEN Sizhong, et al. A comparative study of lumped equivalent circuit models of a lithium battery for state of charge prediction[J]. Energy Research, 2019, 13(43): 7306-7315. |
40 | BI Jun, ZHANG Ting, YU Haiyang, et al. State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter[J]. Applied Energy, 2016, 182: 558-568. |
41 | REMMLINGER J, BUCHHOLZ M, SOCZKA-GUTH T, et al. On-board state of-health monitoring of lithium-ion batteries using linear parameter-varying models[J]. Journal of Power Sources, 2013, 239: 689-695. |
42 | KIM Youngki, MOHAN S, SIEGEL J B, et al. The estimation of temperature distribution in cylindrical battery cells under unknown cooling conditions[J]. IEEE Transactions on Control Systems Technology, 2014, 22(6): 2277-2286. |
43 | LIN Xinfan, PEREZ H E, SIEGEL J B, et al. Online parameterization of lumped thermal dynamics in cylindrical lithium-ion batteries for core temperature estimation and health monitoring[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1745-1755. |
44 | 刘光明, 欧阳明高, 卢兰光, 等. 锂离子电池内部温度场的传递函数在线估计[J]. 汽车安全与节能学报, 2013, 4(1): 61-66. |
LIU Guangming, OUYANG Minggao, LU Languang, et al. Online estimation of internal temperature fields of lithium-ion batteries using a transfer function[J]. Journal of Automotive Safety and Energy, 2013, 4(1): 61-66. |
[1] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[2] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[3] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[4] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[5] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[6] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
[7] | Chunhui LIU, Hongbin REN. Research on active equalization of power batteries based on state of charge [J]. Energy Storage Science and Technology, 2022, 11(2): 667-672. |
[8] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. |
[9] | Yingkai WANG, Hong ZHANG, Xinghui WANG. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health [J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. |
[10] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[11] | Xinyu CAO, Fei PENG, Liwei LI, Jianguang YIN. SOC estimation of lithium battery based on IBAS-NARX neural network model [J]. Energy Storage Science and Technology, 2021, 10(6): 2342-2351. |
[12] | Yiran LI, Wen LI, Xueyu CHANG, Zhitao ZUO, Hui LI, Haisheng CHEN. Modeling of similar characteristics of turbo-expander in supercritical CO2 energy storage based on different working fluids [J]. Energy Storage Science and Technology, 2021, 10(5): 1815-1823. |
[13] | Jianjiang XIE, Xiang GAO, Chengqiang XIA, Yi ZHENG, Hao WANG. Research on information acquisition system of lithium battery energy storage cabin [J]. Energy Storage Science and Technology, 2021, 10(3): 1109-1116. |
[14] | Miao JIANG, Hongli WAN, Gaozhan LIU, Wei WENG, Chao WANG, Xiayin YAO. Co0.1Fe0.9S2@Li7P3S11composite cathode material for all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 925-930. |
[15] | Chengxin SHAN, Liwei LI, Yuxin YANG. SOC of estimation of lithium battery based on IACO-PF [J]. Energy Storage Science and Technology, 2021, 10(3): 1145-1152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||