Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 1153-1162.doi: 10.19799/j.cnki.2095-4239.2021.0009
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Kuining LI1,2(), Yuncheng XIE1,2, Yi XIE3, Qinghua BAI1,2, Jintao ZHENG3
Received:
2021-01-06
Revised:
2021-01-18
Online:
2021-05-05
Published:
2021-04-30
Contact:
Kuining LI
E-mail:leekn@cqu.edu.cn
CLC Number:
Kuining LI, Yuncheng XIE, Yi XIE, Qinghua BAI, Jintao ZHENG. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model[J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162.
Table 1
Battery structure design and performance parameters"
符号 | 参数名称 | 单位 | 铜箔 | 负极 | 隔膜 | 正极 | 铝箔 |
---|---|---|---|---|---|---|---|
L | 电极厚度 | μm | 10 | 73 | 13 | 61 | 16 |
R | 粒子半径 | μm | — | 9.93 | — | 6.32 | — |
Csmax | 最大固相锂离子浓度 | mol/m3 | — | 48396 | — | 31389 | — |
Cs0 | 初始浓度 | mol/m3 | — | 18990 | 1200 | 17277 | — |
SOCmax | 最大荷电状态 | 1 | — | 0.785 | — | 0.955 | — |
SOCmin | 最小荷电状态 | 1 | — | 0.01 | — | 0.415 | — |
εs | 固相体积分数 | 1 | — | 0.65 | — | 0.547 | — |
εe | 液相体积分数 | 1 | — | 0.23 | 0.5307 | 0.332 | — |
σ | 固相电导率 | S/m | — | 100 | — | 3.8 | — |
κ | 液相电导率 | S/m | — | — | 式(1) | — | — |
t+ | 锂离子迁移数 | 1 | — | — | 0.363 | — | — |
α | 电荷传递系数 | 1 | — | 0.5 | — | 0.5 | — |
Ds | 固相扩散系数 | m2/s | — | 式(3) | — | 式(2) | — |
De | 液相扩散系数 | m2/s | — | — | 式(4) | — | — |
k | 电极反应常数 | m/s | — | 2e-11 | — | 5e-10 | — |
R | 摩尔气体常数 | J/(mol·K) | 8.3145 | ||||
F | 法拉第常数 | C/mol | 95485 | ||||
Tref | 参考温度 | K | 298.15 |
1 | 王佳, 孟顺. 发展新能源汽车保障我国能源安全的路径研究[J]. 汽车实用技术, 2020(4): 7-9. |
WANG J, MENG S. Research on the path of developing new energy vehicles to ensure energy security in China[J]. Automobile Technology, 2020(4): 7-9. | |
2 | LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
3 | LI M, LU J, CHEN Z, et al. 30 years of lithium‐ion batteries[J]. Advanced Materials, 2018, 30(33): doi: 10.1002/adma.201800561. |
4 | ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable Sustainable Energy Reviews, 2018, 89: 292-308. |
5 | 肖忠良, 周乘风, 宋刘斌, 等. 富镍锂离子电池三元材料NCM的研究进展[J]. 化工进展, 2020, 39(1): 216-223. |
XIAO Z L, ZHOU C F, SONG L B, et al. Research progress of ternary material NCM for nickel-rich lithium ion battery[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 216-223. | |
6 | HAN X, HUANG Y, LAI H. Electrochemical-thermal coupled investigation of lithium iron phosphate cell performances under air-cooled conditions[J]. Applied Thermal Engineering, 2019, 147: 908-916. |
7 | 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. |
REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. | |
8 | 张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27. |
ZHANG Y J, WANG H W, FENG X N, et al. Research progress on thermal runaway combustion characteristics of power lithium-ion batteries[J]. Journal of Mechanical Engineering, 2019, 55(20): 17-27. | |
9 | 李维平, 李隆键, 陈化雨. 锂离子电池可逆与不可逆生热特性研究[J]. 汽车工程学报, 2019, 9(2): 123-129. |
LI W P, LI L J, CHEN H Y. Investigation on reversible and irreversible heat generation of lithium-ion battery[J]. Chinese Journal of Automotive Engineering, 2019, 9(2): 123-129. | |
10 | 陈军, 康健强, 谭祖宪. 基于电化学–热耦合模型分析18650型锂离子电池的热性能[J]. 化学工程与技术, 2018, 8(2): 97-107. |
CHEN J, KANG J Q, TAN Z X. Analysis of thermal performance of 18650 Li-ion battery based on an electrochemical-thermal coupling model[J]. Journal of Chemical Engineering and Technology, 2018, 8(2): 97-107. | |
11 | YANG N, FU Y, YUE H, et al. An improved semi-empirical model for thermal analysis of lithium-ion batteries[J]. Electrochimica Acta, 2019, 311: 8-20. |
12 | DU S, LAI Y, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510. |
13 | AMIRIBAVANDPOUR P, SHEN W, MU D, et al. An improved theoretical electrochemical-thermal modelling of lithium-ion battery packs in electric vehicles[J]. Journal of Power Sources, 2015, 284: 328-338. |
14 | XU X, JIAN J, XIANG L, et al. Enhancing high-voltage performances of nickel-based cathode material via aluminum and progressive concentration gradient modification[J]. Electrochimica Acta, 2019, 317: 459-467. |
15 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of Electrochemical Society, 1993, 140(6): doi: 10.1149/1.2221597. |
16 | NEWMAN J. Optimization of porosity and thickness of a battery electrode by means of a reaction‐zone model[J]. Journal of Electrochemical Society, 1995, 142(1): doi: 10.1149/1.2043956. |
17 | MEI W, CHEN H, SUN J, et al. Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective[J]. Applied Thermal Engineering, 2018, 142: 148-165. |
18 | REN D, SMITH K, GUO D, et al. Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model[J]. Journal of Electrochemical Society, 2018, 165(10): A2167-A2178. |
19 | ZHANG Y, WANG H, LI W, et al. Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100991. |
20 | JIANG G, ZHUANG L, HU Q, et al. An investigation of heat transfer and capacity fade in a prismatic Li-ion battery based on an electrochemical-thermal coupling model[J]. Applied Thermal Engineering, 2020, 171: doi: 10.1016/j.applthermaleng.2020.115080. |
21 | LIEBIG G, GUPTA G, KIRSTEIN U, et al. Parameterization and validation of an electrochemical thermal model of a lithium-ion battery[J]. Batteries, 2019, 5(3): doi: 10.3390/batteries5030062. |
22 | NG B, COMAN P T, MUSTAIN W E, et al. Non-destructive parameter extraction for a reduced order lumped electrochemical-thermal model for simulating Li-ion full-cells[J]. Journal of Power Sources, 2020, 445: doi: 10.1016/j.jpowsour.2019.227296. |
23 | 崔喜风, 张红亮, 龚阳, 等. 方形硬壳锂离子动力电池的热物性参数[J]. 中国有色金属学报, 2019, 29(12): 2747-2756. |
CUI X F, ZHANG H L, GONG Y, et al. Thermal properties of hard cased lithium-ion power battery[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(12): 2747-2756. | |
24 | WANG L, NIU J, ZHAO W, et al. Study on electrochemical and thermal characteristics of lithium-ion battery using the electrochemical‐thermal coupled model[J]. International Journal of Energy Research, 2019, 43(6): 2086-2107. |
25 | 田华, 王伟光, 舒歌群, 等. 基于多尺度、电化学-热耦合模型的锂离子电池生热特性分析[J]. 天津大学学报, 2016, 49(7): 734-741. |
TIAN H, WANG W G, SHU G Q, et al. Analysis of heat generation in a Li-ion battery based on a multi-scale and electrochemical-thermal coupled model[J]. Journal of Tianjin University, 2016, 49(7): 734-741. | |
26 | YUN F L, TANG L, LI W C, et al. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery[J]. Rare Metals, 2016, 35(4): 309-319. |
27 | 云凤玲. 高比能量锂离子动力电池热性能及电化学-热耦合行为的研究[D]. 北京: 北京有色金属研究总院, 2016. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[4] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[5] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[6] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[7] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
[8] | Xiang WANG, Jing XU, Xinwen CHEN, Yajun DING, Xin XU. Refined thermodynamic simulation of lithium battery based on VCHTC [J]. Energy Storage Science and Technology, 2022, 11(1): 246-252. |
[9] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[10] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
[11] | Jinhui GAO, Yunzhu CHEN, Yang YANG, Fanhui MENG, Hong XU, Li WANG, Jiang ZHOU, Xiangming HE. Research progress of reference electrode for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 987-994. |
[12] | Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes [J]. Energy Storage Science and Technology, 2021, 10(2): 425-431. |
[13] | Rongyan WEN, Zhihao GAO, Shulin MEN, Zuoqiang DAI, Jianmin ZHANG. Research progress of polyvinylidene fluoride based gel polymer electrolyte [J]. Energy Storage Science and Technology, 2021, 10(1): 40-49. |
[14] | Youman ZHAO, Xiaobo YAN, Hongkun DUAN, Zewei CHEN. Exploring mechanism of carbon nanotubes as conductive agent for improving performance of a silicon/carbon anode in LIB [J]. Energy Storage Science and Technology, 2021, 10(1): 118-127. |
[15] | Yan FENG, Lili ZHENG, Zuoqiang DAI, Dong WANG, Longzhou JIA, Tao YIN. Thermal characteristics of 18650 ternary Li-ion battery during discharge [J]. Energy Storage Science and Technology, 2021, 10(1): 319-325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||