Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 1032-1039.doi: 10.19799/j.cnki.2095-4239.2020.0414
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:
2020-12-24
Revised:
2021-02-17
Online:
2021-05-05
Published:
2021-04-30
Contact:
Xiaobo LI
E-mail:wqz@hust.edu.cn;xbli35@hust.edu.cn
CLC Number:
Qinzheng WANG, Xiaobo LI. Thermal cycling study on sodium acetate trihydrate composite phase-change material[J]. Energy Storage Science and Technology, 2021, 10(3): 1032-1039.
Table 2
Thermal properties of the samples before and after thermal cycling"
样品 | 初始循环 | 第245次循环 | 第545次循环 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
潜热h/J·g-1 | 凝固温度Ts /℃ | 潜热h/J·g-1 | 潜热变化Δh | 凝固温度Ts/℃ | 潜热h/J·g-1 | 潜热变化Δh | 凝固温度Ts/℃ | |||
样品1 | 224.82 | 47.4 | 224.45 | -0.16% | 51.4 | 234.06 | +4.11% | 49.2 | ||
样品2 | 224.82 | 50.3 | 222.11 | -1.21% | 49.3 | 223.59 | -0.55% | 46.5 | ||
样品3 | 231.24 | 51.1 | 239.21 | +6.40% | 51.1 | 238.60 | +6.13% | 49.9 | ||
样品4 | 231.24 | 48.7 | 233.96 | +4.07% | 51.9 | 238.94 | +6.28% | 51.8 |
1 | SAFARI A, SAIDUR R, SULAIMAN F A, et al. A review on supercooling of phase change materials in thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 905-919. |
2 | ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510. |
3 | SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
4 | ZHAO B C, LI T X, GAO J C, et al. Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research[J]. Renewable and Sustainable Energy Reviews, 2020, 121: doi: 10.1016/j.rser.2020.109712. |
5 | DANNEMAND M, SCHULTZ J M, JOHANSEN J B, et al. Long term thermal energy storage with stable supercooled sodium acetate trihydrate[J]. Applied Thermal Engineering, 2015, 91: 671-678. |
6 | KONG W Q, DANNEMAND M, JOHANSEN J B, et al. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method[J]. Solar Energy, 2016, 139: 249-257. |
7 | SHIN H K, PARK M, KIM H Y, et al. Thermal property and latent heat energy storage behavior of sodium acetate trihydrate composites containing expanded graphite and carboxymethyl cellulose for phase change materials[J]. Applied Thermal Engineering, 2015, 75: 978-983. |
8 | DANNEMAND M, JOHANSEN J B, FURBO S. Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite[J]. Solar Energy Materials and Solar Cells, 2016, 145: 287-295. |
9 | SEO K, SUZUKI S, KINOSHITA T, et al. Effect of ultrasonic irradiation on the crystallization of sodium acetate trihydrate utilized as heat storage material[J]. Chemical Engineering & Technology, 2012, doi: 10.1002/ceat.201100680. |
10 | DANNEMAND M, DRAGSTED J, FAN J H, et al. Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures[J]. Applied Energy, 2016, 169: 72-80. |
11 | ZHOU G B, XIANG Y T. Experimental investigations on stable supercooling performance of sodium acetate trihydrate PCM for thermal storage[J]. Solar Energy, 2017, 155: 1261-1272. |
12 | JIN X, ZHANG S L, MEDINA M A, et al. Experimental study of the cooling process of partially-melted sodium acetate trihydrate[J]. Energy and Buildings, 2014, 76: 654-660. |
13 | GUION J, TEISSEIRE M. Nucleation of sodium acetate trihydrate in thermal heat storage cycles[J]. Solar Energy, 1991, 46(2): 97-100. |
14 | KIMURA H, KAI J. Phase change stability of sodium acetate trihydrate and its mixtures[J]. Solar Energy, 1985, 35(6): 527-534. |
15 | MAO J F, LI J T, LI J, et al. A selection and optimization experimental study of additives to thermal energy storage material sodium acetate trihydrate[C]//2009 International Conference on Energy and Environment Technology. October 16-18, 2009, Guilin, China. IEEE, 2009: 14-17. |
16 | HE Y, ZHANG N, YUAN Y P, et al. Improvement of supercooling and thermal conductivity of the sodium acetate trihydrate for thermal energy storage with α-Fe2O3 as addictive[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(2): 859-867. |
17 | XIAO Q Q, FAN J X, FANG Y B, et al. The shape-stabilized light-to-thermal conversion phase change material based on CH3COONa·3H2O as thermal energy storage media[J]. Applied Thermal Engineering, 2018, 136: 701-707. |
18 | 杜晓冬, 章学来, 丁锦宏, 等. 纳米成核剂对三水乙酸钠蓄热性能的影响[J]. 建筑节能, 2017, 45(9): 25-28, 59. |
DU X D, ZHANG X L, DING J H, et al. Effects of nanoparticles nucleating agents on the performance of sodium acetate trihydrate[J]. Building Energy Efficiency, 2017, 45(9): 25-28, 59. | |
19 | GARAY RAMIREZ B M L, GLORIEUX C, SAN MARTIN MARTINEZ E, et al. Tuning of thermal properties of sodium acetate trihydrate by blending with polymer and silver nanoparticles[J]. Applied Thermal Engineering, 2014, 62(2): 838-844. |
20 | HE Y, SONG Y L, YUAN Y P, et al. Experimental investigation on the supercooling and heat conduction of sodium acetate trihydrate/copper foam/YSZ composite phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(4): 3275-3284. |
21 | CUI W L, YUAN Y P, SUN L L, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials[J]. Renewable Energy, 2016, 99: 1029-1037. |
22 | FASHANDI M, LEUNG S N. Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 178: 259-265. |
23 | MAO J F, HOU P M, LIU R R, et al. Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material[J]. Applied Thermal Engineering, 2017, 119: 585-592. |
24 | LI X, ZHOU Y, NIAN H, et al. Preparation and thermal energy storage studies of CH3COONa·3H2O-KCl composites salt system with enhanced phase change performance[J]. Applied Thermal Engineering, 2016, 102: 708-715. |
25 | LI T X, WU D L, HE F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2017, 115: 148-157. |
26 | JANKOWSKI N R, MCCLUSKEY F P. A review of phase change materials for vehicle component thermal buffering[J]. Applied Energy, 2014, 113: 1525-1561. |
27 | MA Z W, BAO H S, ROSKILLY A P. Study on solidification process of sodium acetate trihydrate for seasonal solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2017, 172: 99-107. |
28 | PENG S Q, HUANG J, WANG T Y, et al. Effect of fumed silica additive on supercooling, thermal reliability and thermal stability of Na2HPO4·12H2O as inorganic PCM[J]. Thermochimica Acta, 2019, 675: 1-8. |
29 | ZHAO L, XING Y M, LIU X, et al. Thermal performance of sodium acetate trihydrate based composite phase change material for thermal energy storage[J]. Applied Thermal Engineering, 2018, 143: 172-181. |
[1] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. |
[2] | Jun WANG, Jianjun CAO, Liyong ZHANG, Yaqi LIU, Haoshu LING, Yujie XU, Liang WANG, Xuezhi ZHOU, Ningning XIE, Haisheng CHEN. Review on application of cold storage and heat storage technology based on distributed energy system [J]. Energy Storage Science and Technology, 2020, 9(6): 1847-1857. |
[3] | Sai WANG, Zhigao SUN, Juan LI, Cuimin LI. Preparation and properties of lauric acid/tetradecanol/SiO2 shape-stabilized phase change materials [J]. Energy Storage Science and Technology, 2020, 9(6): 1768-1774. |
[4] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[5] | YANG Zhishun, CHEN Lihua, XIA Zhenhua. Numerical investigation of the thermal mechanism of the solid-liquid phase changing process [J]. Energy Storage Science and Technology, 2019, 8(6): 1217-1223. |
[6] | HE Feng, LI Tingxian, YAO Jinyu, WANG Ruzhu. Solar multi-mode heating system based on latent heat thermal energy storage and its application [J]. Energy Storage Science and Technology, 2019, 8(2): 311-318. |
[7] | LI Jintian, MAO Jinfeng. Recent progress in salt hydrate sodium acetate based phase change materials for heat storage [J]. Energy Storage Science and Technology, 2018, 7(5): 881-887. |
[8] | SHENG Peng, ZHAO Guangyao, XU Li, LI Guangbin, MA Guang, CHEN Xin, HAN Yu, ZOU Lulu, WU Yuting. Thermal properties of a low-melting-point nitrate molten salt system [J]. Energy Storage Science and Technology, 2018, 7(4): 682-686. |
[9] | CUI Yanqi . Thermal properties of phase change materials (PCM) and their concise calculations for passive storage applications in buildings#br# [J]. Energy Storage Science and Technology, 2017, 6(2): 302-306. |
[10] | HAN Guangshun, WANG Peilun, JIN Yi, HUANG Yun, DING Hongsheng, DING Yulong. Numerical simulations on performance enhancement of a cross-flow latent thermal energy storage heat exchanger [J]. Energy Storage Science and Technology, 2015, 4(2): 183-188. |
[11] | LIU Yongkun, TAO Yubing, TANG Zongbin. Numerical study on performance enhancement of latent heat storage unit [J]. Energy Storage Science and Technology, 2014, 3(3): 197-202. |
[12] | MAO Lingbo, LIANG Zhibin, LIN Jingtang, LI Futao, KONG Xiangzhan, JIA Demin. Phase change emulsions for latent heat transportation:Preparation and characterization [J]. Energy Storage Science and Technology, 2014, 3(2): 128-132. |
[13] | Laing Doerte,Steinmann Wolf-Dieter,Tamme Rainer,W?rner Antje,Zunft Stefan. Advances in thermal energy storage development at the German Aerospace Center (DLR) [J]. Energy Storage Science and Technology, 2012, 1(1): 13-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||