Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (5): 1796-1805.doi: 10.19799/j.cnki.2095-4239.2021.0330
Previous Articles Next Articles
Han ZHANG1,2(
), Liang WANG1,2(
), Xipeng LIN1, Haisheng CHEN1,2,3
Received:2021-07-12
Revised:2021-07-22
Online:2021-09-05
Published:2021-09-08
CLC Number:
Han ZHANG, Liang WANG, Xipeng LIN, Haisheng CHEN. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(5): 1796-1805.
Table 1
Some design parameters of 10 MW/4 hIs-PTES and Sa-PTES system using helium working fluid under standard operating conditions"
| 参数 | Is-PTES系统 | Sa-PTES系统 |
|---|---|---|
| 最高温度/K | 799.03 | 1268.15[ |
| 最低温度/K | 136.64 | 175.55 |
| 高温填充床初始温度/K | 298.15[ | 298.15[ |
| 低温填充床初始温度/K | 298.15[ | 655.47 |
| 低温填充床压力/MPa | 0.105[ | 0.105[ |
| 储电压比 | 10 | 4.6 |
| 释电压比 | 7.70 | 6.58 |
| 氦气流量/(kg·s-1) | 9.00 | 4.88 |
| 高温填充床体积/m3 | 503 | 202 |
| 低温填充床体积/m3 | 1006 | 342 |
| 压缩机/膨胀机等熵效率 | 0.9[ | 0.9[ |
| 1 | CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science-Materials International, 2009, 19(3): 291-312. |
| 2 | GUO H, XU Y J, GUO C, et al. Thermodynamic analysis of packed bed thermal energy storage system[J]. Journal of Thermal Science, 2020, 29(2): 445-456. |
| 3 | MARGUERRE F. Ueber ein neues verfahren zur aufspeicherung elektrischer energie[J]. Mitteilungen der Vereinigung der Elektrizitätswerke, 1924, 354(55): 27-35. |
| 4 | MORANDIN M, MARECHAL F, MERCANGOZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles-Part A: Methodology and base case[J]. Energy, 2012, 45(1): 375-385. |
| 5 | MERCANGÖZ M, HEMRLE J, KAUFMANN L, et al. Electrothermal energy storage with transcritical CO2 cycles[J]. Energy, 2012, 45(1): 407-415. |
| 6 | STEINMANN W D. The CHEST (compressed heat energy storage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69: 543-552. |
| 7 | HOWES J. concept and development of a pumped heat electricity storage device[J]. Proceeding of the IEEE, 2011, 100(2): 493-503. |
| 8 | RUER J. Installation and methods for storing and methods for storing and restoring electrical energy using a piston-type gas compression and expansion unit: US8443605[P]. [2013-05-21]. |
| 9 | LAUGHLIN R B, LAROCHELLE P, CIZEK N. Systems and methods for energy storage and retrieval: USWO/2014/052927[P].[2014-04-03]. |
| 10 | LAUGHLIN R B. Adiabatic salt energy storage: US9932830[P]. [2018-04-03]. |
| 11 | DESRUES T, RUER J, MARTY P, et al. A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30(5): 425-432. |
| 12 | NI F, CARAM H S. Analysis of pumped heat electricity storage process using exponential matrix solutions[J]. Applied Thermal Engineering, 2015, 84: 34-44. |
| 13 | LAUGHLIN R B. Pumped thermal grid storage with heat exchange[J]. Journal of Renewable and Sustainable Energy, 2017, 9(4): doi: 10.1063/1.4994054. |
| 14 | Newcastle University. Hot rock solution to grid-scale energy storage[EB/OL], https://www.ncl.ac.uk/press/articles/archive/2017/11/Isentropic. |
| 15 | THE ENGINEER. Newcastle University connects first grid-scale pumped heat energy storage system[EB/OL]. https://www.theengineer.co.uk/grid-scale-pumped-heat-energy-storage/. |
| 16 | WHITE A, PARKS G, MARKIDES C N. Thermodynamic analysis of pumped thermal electricity storage[J]. Applied Thermal Engineering, 2013, 53(2): 291-298. |
| 17 | MCTIGUE J D, WHITE A J, MARKIDES C N. Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied Energy, 2015, 137: 800-811. |
| 18 | WANG L, LIN X P, CHAI L, et al. Unbalanced mass flow rate of packed bed thermal energy storage and its influence on the Joule-Brayton based pumped thermal electricity storage[J]. Energy Conversion and Management, 2019, 185: 593-602. |
| 19 | WANG L, LIN X P, CHAI L, et al. Cyclic transient behavior of the Joule-Brayton based pumped heat electricity storage: Modeling and analysis[J]. Renewable & Sustainable Energy Reviews, 2019, 111: 523-534. |
| 20 | WANG L, LIN X P, ZHANG H, et al. Brayton-cycle-based pumped heat electricity storage with innovative operation mode of thermal energy storage array[J]. Applied Energy, 2021, 291: doi: 10.1016/j.apenergy. 2021.116821. |
| 21 | ZHANG H, WANG L, LIN X P, et al. Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle[J]. Applied Energy, 2020, 278: doi: 10.1016/j.apenergy. 2020.115607. |
| 22 | ZHANG N, CAI R X. Analytical solutions and typical characteristics of part-load performances of single shaft gas turbine and its cogeneration[J]. Energy Conversion and Management, 2002, 43(9): 1323-1337. |
| 23 | WANG W, CAI R X, ZHANG N. General characteristics of single shaft microturbine set at variable speed operation and its optimization[J]. Applied Thermal Engineering, 2004, 24(13): 1851-1863. |
| 24 | GUO H, XU Y J, ZHANG Y, et al. Off-design performance and operation strategy of expansion process in compressed air energy systems[J]. International Journal of Energy Research, 2018, 43(1): 475-490. |
| 25 | ZANGANEH G, PEDRETTI A, ZAVATTONI S, et al. Packed-bed thermal storage for concentrated solar power-pilot-scale demonstration and industrial-scale design[J]. Solar Energy, 2012, 86(10): 3084-3098. |
| 26 | SCIACOVELLI A, LI Y L, CHEN H S, et al. Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage-link between components performance and plant performance[J]. Applied Energy, 2017, 185: 16-28. |
| 27 | MCTIGUE J. Analysis and optimisation of thermal energy storage[D]. UK: University of Cambridge, 2016. |
| [1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
| [2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
| [3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
| [4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
| [5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
| [6] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
| [7] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
| [8] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
| [9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
| [10] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
| [11] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
| [12] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
| [13] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
| [14] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
| [15] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||