Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (4): 1165-1174.doi: 10.19799/j.cnki.2095-4239.2021.0480
• Special issue of International Outstanding Young Scientists for Energy Storage • Previous Articles Next Articles
Tiezhu GUO1,2(), Di ZHOU2, Chuanfang ZHANG1(
)
Received:
2021-09-13
Revised:
2021-10-07
Online:
2022-04-05
Published:
2022-04-11
Contact:
Chuanfang ZHANG
E-mail:tiezhu.guo@empa.ch;chuanfang.zhang@empa.ch
CLC Number:
Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance[J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174.
1 | GUO T Z, ZHOU D, LIU W F, et al. Recent advances in all-in-one flexible supercapacitors[J]. Science China Materials, 2021, 64(1): 27-45. |
2 | WANG F X, WU X W, YUAN X H, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854. |
3 | ABDOLHOSSEINZADEH S, HEIER J, ZHANG C F. Coating porous MXene films with tunable porosity for high-performance solid-state supercapacitors[J]. Chemelectrochem, 2021, 8(10): 1911-1917. |
4 | ABDOLHOSSEINZADEH S, HEIER J, ZHANG C F. Printing and coating MXenes for electrochemical energy storage devices[J]. Journal of Physics-Energy. 2020, 2(3): doi: 10.1088/2515-7655/aba47d. |
5 | ZHANG C F. Interfacial assembly of two-dimensional MXenes[J]. Journal of Energy Chemistry, 2021, 60: 417-434. |
6 | Li N, PENG J H, ONG W J, et al. MXenes: An emerging platform for wearable electronics and looking beyond[J]. Matter, 2021, 4(2): 377-407. |
7 | KARAHAN H E, GOH K, ZHANG C F, et al. MXene materials for designing advanced separation membranes[J]. Advanced Materials, 2020, 32(29): doi: 10.1002/adma.201906697. |
8 | VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): 1165. |
9 | ABDOLHOSSEINZADEH S, SCHNEIDER R, VERMA A, et al. Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors[J]. Advanced Materials, 2020, 32(17): doi: 10.1002/adma.202000716. |
10 | DING L, Li L B, LIU Y C, et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater[J]. Nature Sustainability. 2020, 3(4): 296-302. |
11 | LUO Y, CHEN G-F, DING L, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule, 2019, 3(1): 279-289. |
12 | CHENG Y, MA Y, LI L, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J], ACS Nano, 2020, 14(2): 2145-2155. |
13 | LIU J, ZHANG H B, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017, 29(38): doi: 10.1002/adma.201702367. |
14 | HUANG R K, CHEN X, DONG Y Q, et al. MXene composite nanofibers for cell culture and tissue engineering[J]. ACS Applied Bio Materials, 2020, 3(4): 2125-2131. |
15 | LUKATSKAYA M R, KOTA S, LIN Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2(8): 17105. |
16 | LIN H, WANG X G, YU L D, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 2017, 17(1): 384-391. |
17 | 吕通, 张恩爽, 原因, 等. 大片单层低缺陷MXene的制备及其膜材料的电磁屏蔽性能[J]. 高等学校化学学报, 2019, 40(10): 2059-2066. |
LYU T, ZHANG E S, YUAN Y, et al. Preparation of large-size single layer MXene with low defect and electromagnetic shielding performance of MXene film[J]. Chemical Journal of Chinese Universities, 2019, 40(10): 2059-2066. | |
18 | GUO T Z, FU M S, ZHOU D, et al. Flexible Ti3C2Tx/graphene films with large-sized flakes for supercapacitors[J]. Small Structures, 2021, 2(7): doi: 10.1002/sstr.202100015. |
19 | SHAO H, XU K, WU Y C, et al. Unraveling the charge storage mechanism of Ti3C2Tx MXene electrode in acidic electrolyte[J]. ACS Energy Letters, 2020, 5(9): 2873-2880. |
20 | ABDOLHOSSEINZADEH S, JIANG X T, ZHANG H, et al. Perspectives on solution processing of two-dimensional MXenes[J]. Materials Today, 2021, 48: 214-240. |
21 | XIA J X, YANG S Z, WANG B, et al. Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2[J]. Nano Energy, 2020, 72: doi: 10.1016/j.nanoen.2020.104681. |
22 | JIA G W, ZHENG A, WANG X, et al. Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor[J]. Sensors and Actuators B: Chemical, 2021, 346: doi: 10.1016/j.snb.2021.130507. |
23 | IQBAL A, HONG J, KO T Y, et al. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions[J]. Nano Convergence, 2021, 8(1): 9. |
24 | DOO S, CHAE A, KIM D, et al. Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures[J]. ACS applied materials & interfaces, 2021, 13(19): 22855-22865. |
25 | ZHANG J Z, KONG N, HEGH D, et al. Freezing titanium carbide aqueous dispersions for ultra-long-term storage[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 34032-34040. |
26 | ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials, 2017, 29(11): 4848-4856. |
27 | HUANG S H, MOCHALIN V N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions[J]. Inorganic Chemistry, 2019, 58(3): 1958-1966. |
28 | HABIB T, ZHAO X F, SHAH S A, et al. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films[J]. npj 2D Materials and Applications, 2019, 3(1): 8. |
29 | 唐俊. 二维Ti3C2Tx纳米结构调控及其对电化学性能的影响[D]. 北京: 北京大学, 2020.TANG J. Tuning the nanostructure of Ti3C2Tx MXene for optimization of the electrochemical performance[D]. Beijing: Peking University, 2020. |
30 | TANG J, MATHIS T S, KURRA N, et al. Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation[J]. Angewandte Chemie-International Edition, 2019, 58(49): 17849-17855. |
31 | WU C-W, UNNIKRISHNAN B, CHEN I W P, et al. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application[J]. Energy Storage Materials, 2020, 25: 563-571. |
32 | ZHAO X F, VASHISTH A, BLIVIN J W, et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions[J]. Advanced Materials Interfaces, 2020, 7(20): doi: 10.1002/admi.202000845. |
33 | SHUCK C E, HAN M K, MALESKI K, et al. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene[J]. ACS Applied Nano Materials, 2019, 2(6): 3368-3376. |
34 | MATHIS T S, MALESKI K, GOAD A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene[J]. ACS Nano, 2021, 15(4): 6420-6429. |
35 | SANG X H, XIE Y, LIN M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano, 2016, 10(10): 9193-9200. |
36 | SARYCHEVA A, GOGOTSI Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene[J]. Chemistry of Materials, 2020, 32(8): 3480-3488. |
37 | SHI Y C, LIU Y. Vacancy and N dopants facilitated Ti3+ sites activity in 3D Ti3- xC2Ty MXene for electrochemical nitrogen fixation[J]. Applied Catalysis B: Environmental, 2021, 297: doi: 10.1016/j.apcatb.2021.120482. |
38 | LUKATSKAYA M R, BAK S M, YU X Q, et al. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy[J]. Advanced Energy Materials, 2015, 5(15): doi: 10.1002/aenm.201500589. |
39 | ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29(18): 7633-7644. |
40 | SHI H H, ZHANG P P, LIU Z C, et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching[J]. Angewandte Chemie-International Edition, 2021, 60(16): 8689-8693. |
41 | HE P, WANG X X, CAI Y Z, et al. Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding[J]. Nanoscale, 2019, 11(13): 6080-6088. |
42 | 李雪松. 二维晶体MXene (Ti3C2Tx)环境不稳定性的研究[D]. 济南: 山东大学, 2021.LI X S. Study on environmental instability of two-dimensional crystal MXene (Ti3C2Tx) [D]. Ji'nan: Shandong university, 2021. |
43 | NATU V, HART J L, SOKOL M, et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions[J]. Angewandte Chemie-International Edition, 2019, 58(36): 12655-12660. |
44 | ZHAO X F, VASHISTH A, PREHN E, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions[J]. Matter, 2019, 1(2): 513-526. |
45 | LI J B, QIN R Z, YAN L, et al. Plasmonic light illumination creates a channel to achieve fast degradation of Ti3C2Tx nanosheets[J]. Inorganic Chemistry, 2019, 58(11): 7285-7294. |
46 | JI J J, ZHAO L F, SHEN Y F, et al. Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties[J]. FlatChem, 2019, 17: doi: 10.1016/j.flatc.2019.100128. |
47 | YANG W Z, HUANG B Y, LI L B, et al. Covalently sandwiching MXene by conjugated microporous polymers with excellent stability for supercapacitors[J]. Small Methods, 2020, 4(10): doi: 10.1002/smtd.202000434. |
48 | SEYEDIN S, ZHANG J Z, USMAN K A S, et al. Facile solution processing of stable MXene dispersions towards conductive composite fibers[J]. Global Challenges, 2019, 3(10): doi: 10.1002/gchz.201900037. |
49 | SATO T, HAMADA Y, SUMIKAWA M, et al. Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen[J]. Industrial and Engineering Chemistry Research, 2014, 53(49): 19331-19337. |
50 | CHAE Y, KIM S J, CHO S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene[J]. Nanoscale, 2019, 11(17): 8387-8393. |
51 | MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials, 2017, 29(4): 1632-1640. |
52 | ZHANG Q X, LAI H R, FAN R Z, et al. High concentration of Ti3C2Tx MXene in organic solvent[J]. ACS Nano, 2021, 15(3): 5249-5262. |
53 | LUO Y Y, YANG C H, TIAN Y P, et al. A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) nanohybrid and MXene electrodes[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2019.227694. |
[1] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[2] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[3] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[4] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[5] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[6] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[7] | Ying SUN, Qin ZHAO, Bosi YIN, Tianyi MA. Performance of PTCDI//δ-MnO2 aqueous ammonium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1110-1120. |
[8] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[9] | Zan DUAN, Lingfang LI, Penghui LIU, Dongfang XIAO. Review on advanced preparation methods and energy storage mechanism of MXenes as energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 982-990. |
[10] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
[11] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[12] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[13] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[14] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[15] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||