Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (4): 1175-1183.doi: 10.19799/j.cnki.2095-4239.2021.0600
• Special issue of International Outstanding Young Scientists for Energy Storage • Previous Articles Next Articles
Xinyu ZHOU1(), Daocheng LUAN1, Zhihua HU1, Junhua LING1, Kelin WEN1, Lang LIU1, Zhiming YIN1, Shuheng MI1, Zhengyun WANG1,2(
)
Received:
2021-11-12
Revised:
2021-12-01
Online:
2022-04-05
Published:
2022-04-11
Contact:
Zhengyun WANG
E-mail:xyz2653@163.com;wzy-513@163.com
CLC Number:
Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials[J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183.
1 | ALI S, DESHMUKH S P. An overview: Applications of thermal energy storage using phase change materials[J]. Materials Today: Proceedings, 2020, 26: 1231-1237. |
2 | HAWES D W, FELDMAN D, BANU D. Latent heat storage in building materials[J]. Energy and Buildings, 1993, 20(1): 77-86. |
3 | WU S, LI T X, TONG Z, et al. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting[J]. Advanced Materials, 2019, 31(49): doi: 10.1002/adma.201905099. |
4 | HAN G S, DING H S, HUANG Y, et al. A comparative study on the performances of different shell-and-tube type latent heat thermal energy storage units including the effects of natural convection[J]. International Communications in Heat and Mass Transfer, 2017, 88: 228-235. |
5 | DENHOLM P, MARGOLIS R M. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies[J]. Energy Policy, 2007, 35(9): 4424-4433. |
6 | GIOVANNELLI A, BASHIR M A. Development of a solar cavity receiver with a short-term storage system[J]. Energy Procedia, 2017, 136: 258-263. |
7 | BASHIR M A, GIOVANNELLI A, AMBER K P, et al. High-temperature phase change materials for short-term thermal energy storage in the solar receiver: Selection and analysis[J]. Journal of Energy Storage, 2020, 30: doi: 10.1016/j.est.2020.101496. |
8 | QI L, LIN C, et al. Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 211: doi:10.1016/j.solmat.2020.110511. |
9 | YAWS C L. Thermophysical properties of chemicals and hydrocarbons[M]. Lin Sy-Chyl, Norwich, NY, William Andrew Publishing, 2009: 592-596. |
10 | HUANG Y, DUAN J, et al. Lithium metal-based composite: An emerging material for next-generation batteries[J]. Matter, 2020, 3(4): 1009-1030. |
11 | 赵国立, 许莹, 蔡艳青, 等. 难熔金属含氧酸盐短流程熔盐电解制备金属单质及合金的研究进展[J]. 中国有色冶金, 2021, 50(3): 53-62. |
ZHAO G L, XU Y, CAI Y Q, et al. Research progress and preparation of metal element and alloy from refractory metal oxoate by short flow molten salt electrolysis[J]. China Nonferrous Metallurgy, 2021, 50(3): 53-62. | |
12 | 孔令刚. 镍、钴金属及其磷化物修饰的复合光催化剂——光化学制备、性能和机理[D]. 无锡: 江南大学, 2017. |
KONG L G. Photocatalyst modified with Ni, Co and their phosphides—Photechemical synthesis, performance and mechanism[D]. Wuxi: Jiangnan University, 2017. | |
13 | 郑春宇. 生物氧化提金废液中单质砷的回收及高值化利用研究[D]. 沈阳: 东北大学, 2010. |
ZHENG C Y. Investigation on arsenic recovery and value-added utilization from arsenic waste water[D]. Shenyang: Northeastern University, 2010. | |
14 | FERNANDEZ V. Assessing cycles of mine production and prices of industrial metals[J]. Resources Policy, 2019, 63: doi: 10.1016/j.resourpol.2019.101405. |
15 | 罗文来. 金属粉末价格变化与金刚石工具面临的新挑战[J]. 工业金刚石, 2005(3): 37-40. |
16 | 2017年中国钛工业发展报告[J].中国金属通报, 2018(6): 1-4. |
2017 China titanium industry development report[J]. China Metal Bulletin, 2018 (6): 1-4 | |
17 | 李巧凤. 金属镁市场价格涨幅明显[J]. 铸造技术, 2010(12): 1535-1536. |
18 | 李斌. 有色金属: 阶段反弹可期[J]. 股市动态分析, 2017(46): 12. |
19 | 供不应求致金属铬价大涨 后期有望继续上行[J]. 铁合金, 2015, 46(8): 23. |
20 | 编辑部. 2005年钒铁生产总体回顾及2006年展望[J]. 矿业快报, 2006(2): 67-68. |
21 | 王钊越. 金属锂的应用及其市场[J]. 新疆有色金属, 2018, 41(S1): 56-58. |
22 | 肖俊清. 通威股份:硅料价格开涨 H2竞价项目超预期[J]. 股市动态分析, 2020(15): 42-43. |
23 | 编辑部. 粉体产业前瞻预测[J]. 中国粉体工业, 2020(1): 57-60. |
24 | DARVISHI KAMACHALI R, WANG L. Elastic energy of multi-component solid solutions and strain origins of phase stability in high-entropy alloys[J]. Scripta Materialia, 2022, 206: doi: 10.1016/j.scriptamat.2021.114226. |
25 | MIEDEMA A R, DE CHÂTEL P F, DE BOER F R. Cohesion in alloys—Fundamentals of a semi-empirical model[J]. Physica B+C, 1980, 100(1): 1-28. |
26 | WANG Z Y, WANG H, LI X B, et al. Aluminum and silicon based phase change materials for high capacity thermal energy storage[J]. Applied Thermal Engineering, 2015, 89: 204-208. |
27 | COSTA S C, KENISARIN M. A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges[J]. Renewable and Sustainable Energy Reviews, 2022, 154: doi: 10.1016/j.rser.2021.111812. |
28 | 程晓敏, 何高, 吴兴文. 铝基合金储热材料在太阳能热发电中的应用及研究进展[J]. 材料导报, 2010, 24(17): 139-143. |
CHENG X M, HE G, WU X W. Application and research progress of aluminum-based thermal storage materials in solar thermal power[J]. Materials Review, 2010, 24(17): 139-143. | |
29 | LIU M, SAMAN W, BRUNO F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2118-2132. |
30 | CÁRDENAS B, LEÓN N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 724-737. |
31 | ALVA G, LIU L K, HUANG X, et al. Thermal energy storage materials and systems for solar energy applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 693-706. |
32 | CABEZA L F, CASTELL A, BARRENECHE C, et al. Materials used as PCM in thermal energy storage in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1675-1695. |
33 | WEI G S, HUANG P R, XU C, et al. Thermophysical property measurements and thermal energy storage capacity analysis of aluminum alloys[J]. Solar Energy, 2016, 137: 66-72. |
34 | KHADIRAN T, HUSSEIN M Z, ZAINAL Z, et al. Advanced energy storage materials for building applications and their thermal performance characterization: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 916-928. |
35 | DAIKOKU H, KAWANISHI S, ISHIKAWA T, et al. Density, surface tension, and viscosity of liquid Si-Cr alloys and influence on temperature and fluid flow during solution growth of SiC[J]. The Journal of Chemical Thermodynamics, 2021, 160: doi: 10.1016/j.jct.2021.106476. |
36 | 刘婷婷. 短石墨纤维/铝电子封装材料的制备与性能研究[D]. 北京: 北京科技大学, 2015. |
LIU T T. Research on preparation and performance of short graphite fiber/Al electronic packaging material[D]. Beijing: University of Science and Technology Beijing, 2015. | |
37 | 苏喜平, 杜爱兵, 韩晓辉, 等. 快堆控制棒组件用高富集度碳化硼芯块的热物理性能研究[J]. 山东陶瓷, 2015, 38(4): 3-5. |
SU X P, DU A B, HAN X H, et al. Study on thermophysical properties of B4C pellets used as control material in fast reactor[J]. Shandong Ceramics, 2015, 38(4): 3-5. | |
38 | 程心雨, 刘荣正, 刘马林, 等. 碳化物陶瓷材料在核反应堆领域应用现状[J]. 科学通报, 2021, 66(24): 3154-3170. |
CHENG X Y, LIU R Z, LIU M L, et al. Applications of carbide ceramics in nuclear reactors[J]. Chinese Science Bulletin, 2021, 66(24): 3154-3170. | |
39 | BECKER W T. ASM metals hand book volume 3-alloy phase diagrams[M]. ASM International, 1992. |
40 | SAHA P K, MAZUMDER A, MUKHERJEE G D. Thermal conductivity of dense hcp iron: Direct measurements using laser heated diamond anvil cell[J]. Geoscience Frontiers, 2020, 11(5): 1755-1761. |
41 | ŘEHÁČKOVÁ L, NOVÁK V, SMETANA B, et al. Possibilities of complex experimental study of thermophysical and thermodynamic properties of selected steels[J]. Journal of Materials Research and Technology, 2019, 8(4): 3635-3643. |
42 | LI M, BROOKS J A, ATTERIDGE D G, et al. Thermophysical property measurements on low alloy high strength carbon steels[J]. Scripta Materialia, 1997, 36(12): 1353-1359. |
43 | FILIPI B. Materials science[M]. Fire and Security Engineering Association, 2003. |
44 | BHADESHIA H, HONEYCOMBE R. Steels (Third edition)[M]. Oxford: Butterworth-Heinemann,2006. |
[1] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[2] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[3] | Zhong XU, Jing HOU, Jun LI, Enhui WU, Ping HUANG, Yalan TANG. Properties of different particle-sized activated carbon/myristic acid composite phase change material [J]. Energy Storage Science and Technology, 2021, 10(1): 177-189. |
[4] | Jianjun WANG, Yuxia SHEN, Yu ZHANG, Tuodi ZHANG, Yong LI, Yi WANG. T-history method and its application in the determination of thermophysical properties of phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 280-286. |
[5] | Sai WANG, Zhigao SUN, Juan LI, Cuimin LI. Preparation and properties of lauric acid/tetradecanol/SiO2 shape-stabilized phase change materials [J]. Energy Storage Science and Technology, 2020, 9(6): 1768-1774. |
[6] | LIU Lihui, MO Yajing, SUN Xiaoqin, LI Jie, LI Chuanchang, XIE Baoshan. Thermal behavior of the nanoenhanced phase change materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. |
[7] | JIN Guang, ZHAO Wenxiu, ZHAO Jun, GUO Shaopeng. Development and research status on the technology of direct contact thermal energy storage [J]. Energy Storage Science and Technology, 2019, 8(3): 477-487. |
[8] | MEHVISH Tariq, CHENG Xiaomin, LI yuanyuan, HUANG Yi, LI Ge, WANG Xiuli, ZHU Shilei, WAQAR Khan. Influence of carbon nanotubes and nano-alumina on the thermal performance of nitrate phase change materials for thermal storage [J]. Energy Storage Science and Technology, 2018, 7(S1): 47-53. |
[9] | WANG Hanqing, ZHAO Yue. Application of energy storage enclosure with phase change materials in building energy saving [J]. Energy Storage Science and Technology, 2018, 7(S1): 75-83. |
[10] | LI Dan, CHENG Xiaomin, LI Yuanyuan. Thermal properties of a modified MOF-stearic acid composite phase change materials [J]. Energy Storage Science and Technology, 2018, 7(4): 654-660. |
[11] | ZHANG Yelong1, SONG Pengfei1, ZHOU Wei1, WANG Gang1, XU Yong1, WENG Likui1, LENG Guanghui2, DING Yulong2. Electrical heating systems with heat storage using composite phase change materials [J]. Energy Storage Science and Technology, 2017, 6(6): 1250-. |
[12] | SHI Wenhua1, ZHU Xingyuan1, ZHU Jiaoqun1, LIU Fengli1,2, LI Ruguang1, ZHANG Hongguang1. Preparation and characterization of gypsum composites containing cupric- palmitic acid based phase change material in diatomite [J]. Energy Storage Science and Technology, 2017, 6(6): 1306-. |
[13] | MENG Lingran1,2, GUO Lijiang1, LI Xiaoyu1, WANG Hui1, CHEN Shengli2, ZHOU Yuan3, LI Jianqiang1. Salt hydrate based phase change materials for thermal energy storage—A review#br# [J]. Energy Storage Science and Technology, 2017, 6(4): 623-632. |
[14] | LI Chuan1, LI Qi2, JIANG Zhu1, CAO Hui1, QIAO Geng3, LI Yongliang1, LEI Xianzhang3, DING Yulong1. Charging and discharging behavior of carbonate-based salt composite phase change material modules [J]. Energy Storage Science and Technology, 2017, 6(4): 655-661. |
[15] | LING Ziye, WANG Qianhao, ZHANG Zhengguo, GAO Xuenong, FANG Xiaoming. Performance study of a cold storage device with a combination of two phase change materials [J]. Energy Storage Science and Technology, 2017, 6(4): 696-700. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||