Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (4): 623-632.doi: 10.12028/j.issn.2095-4239.2017.0003
Previous Articles Next Articles
MENG Lingran1,2, GUO Lijiang1, LI Xiaoyu1, WANG Hui1, CHEN Shengli2, ZHOU Yuan3, LI Jianqiang1
Received:
2017-01-11
Revised:
2017-04-18
Online:
2017-07-01
Published:
2017-05-04
MENG Lingran1,2, GUO Lijiang1, LI Xiaoyu1, WANG Hui1, CHEN Shengli2, ZHOU Yuan3, LI Jianqiang1. Salt hydrate based phase change materials for thermal energy storage—A review#br#[J]. Energy Storage Science and Technology, 2017, 6(4): 623-632.
[1] 赵浩博. 论我国能源结构战略性调整策略[J]. 财经界, 2016(21): 367-368. [2] FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion & Management, 2004, 45(9/10): 1597-1615. [3] 张寅平, 胡汉平, 孔祥冬. 相变贮能-理论和应用[M]. 合肥: 中国科学技术大学出版社, 1996. [4] TELKES M. Thermal storage in salt-hydrates[J]. Solar Materials Science, 1980, 1: 377-404. [5] TELKES M. Thermal storage for solar heating and cooling[C]// Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings, USA: Charlottesville, Virginia, 1975. [6] TELKES M. Nucleation of supersaturated inorganic salt solutions[J]. Industrial & Engineering Chemistry, 1952, 44(6): 1308-1310. [7] LANE G A. Low temperature heat storage with phase change materials[J]. International Journal of Ambient Energy, 2011, 1(3): 155-168. [8] LANE G A. Solar heat storage: Latent heat materials. Volume 2. Technology[M]. Florida: CRC Press, 1983. [9] LANE G A. Solar heat storage: Latent heat materials. Volume 1. Background and scientific principles[M]. Florida: CRC Press, 1983. [10] BELTON G, AJAMI F. Thermochemistry of salt hydrates[R]. USA: Pennsylvania University, 1973. [11] GUION J, SAUZADE J D, LAÜGT M. Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates[J]. Thermochimica Acta, 1983, 67(2/3): 167-179. [12] ABHAT A. Low temperature latent heat thermal energy storage: Heat storage materials[J]. Solar Energy, 1983, 30(4): 313-332. [13] KENISARIN M, MAHKAMOV K. Salt hydrates as latent heat storage materials: Thermophysical properties and costs[J]. Solar Energy Materials & Solar Cells, 2015, 145: 255-286. [14] ZALBA B, JOSÉ M A MARÍN, CABEZA L F, et al. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. [15] DONG O, ZENG D, ZHOU H, et al. Phase change materials in the ternary system NH4Cl+CaCl2+H2O[J]. Calphad, 2011, 35(3): 269-275. [16] LI G, ZHANG B, LI X, et al. The preparation, characterization and modification of a new phase change material: CaCl2•6H2O- MgCl2•6H2O eutectic hydrate salt[J]. Solar Energy Materials and Solar Cells, 2014, 126: 51-55. [17] VOIGT W, ZENG D. Solid-liquid equilibria in mixtures of molten salt hydrates for the design of heat storage materials[J]. Pure and Applied Chemistry, 2002, 74(10): 1909-1920. [18] RAI A K, KUMAR A. A review on phase change materials & their applications[J]. International Journal of Advanced Research in Engineering & Technology (IJARET), 2012, 3(2): 214-225. [19] BAUMANN H, HECKENKAMP J. Latent heat storage materials[J]. Nachrichten Aus Chemie Technik Und Laboratorium, 1997, 45(11): 1075-1081. [20] NAGANO K, MOCHIDA T, IWATA K, et al. Thermal performance of Mn(NO3)2•6H2O as a new PCM for cooling system[C]//5th Workshop of the IEA ECES IA Annex, 2000. [21] DINCER I, ROSEN M. Thermal energy storage: Systems and applications[M]. USA: John Wiley & Sons, 2002. [22] 刘雨时. 严寒地区村镇建筑用无机相变材料的制备与封装[D]. 哈尔滨: 哈尔滨工业大学, 2014. [23] LANE G A. PCM science and technology: The essential connection[J]. ASHRAE Transactions, 1985, 91(2B): 1897-1910. [24] AMES D A. Thermal storage forum: Eutectic cool storage current developments[M]. ASHRAE Journal, 1990: 46-53. [25] 刘剑虹, 刘瑞虹, 王超会, 等. Na2SO4•10H2O 复合相变储能体系的热力学测试[J]. 节能, 2007, 26(9): 13-14. LIU Jianhong, LIU Ruihong, WANG Chaohui, et al. Thermodynamics test of Na2SO4•10H2O phase change compound system[J]. Energy Conservation, 2007, 26(9): 13-14. [26] PEARSON A. Interest growing in heat-eating materials[J]. Construction Research and Innovation, 2011, 2(3): 14-17. [27] FARID M, KONG W J. Underfloor heating with latent heat storage[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2001, 215(5): 601-609. [28] 阮德水, 张太平. 相变贮热材料的DSC研究[J]. 太阳能学报, 1994(1): 19-24. RUAN Deshui, ZHANG Taiping. DSC investigation of phase change materials[J]. Acta Energy Solaris Sinica, 1994(1): 19-24. [29] 阮德水, 张太平. 水合盐相变热长期贮存的研究[J]. 太阳能学报, 1993(1): 16-22. RUAN Deshui, ZHANG Taiping. Study on long-term heat storage using molten salt hydrates[J]. Acta Energy Solaris Sinica, 1993(1): 16-22. [30] 黎厚斌, 胡起柱, 阮德水. NaNO2-NaOAc-HCOONa三元体系相图研究[J]. 华中师范大学学报 (自然科学版), 1995(4): 469-472. LI Houbin, HU Qizhu, RUAN Deshui. Studies on the phase diagram of the ternary system NaNO2-NaOAc-HCOONa[J]. Journal of Central China Normal University (Natural Sicence), 1995(4): 469-472. [31] 刘应江, 罗飙. 常规空调工况分布式相变储能空调系统: CN 103912948A[P]. 2014-07-09. [32] 王志强, 曹明礼, 龚安华. 相变储热材料的种类、应用及展望[J]. 安徽化工, 2005, 31(2): 8-11. WANG Zhiqiang, CAO Mingli, GONG Anhua. Variety application and future of the phased-change material to store the heat[J]. Anhui Chemical Industry, 2005, 31(2): 8-11. [33] LANE G A. Phase change materials for energy storage nucleation to prevent subcooling[J]. Solar Energy Mater. Solar Cells, 1991, 27: 135-60. [34] PILAR R, SVOBODA L, HONCOVA P, et al. Study of magnesium chloride hexahydrate as heat storage material[J]. Thermochimica Acta, 2012, 546(20): 81-86. [35] WADA T, YAMAMOTO R. Studies on salt hydrate for latent heat storage. I. Crystal nucleation of sodium acetate trihydrate catalyzed by tetrasodium pyrophosphate decahydrate[J]. Bulletin of the Chemical Society of Japan, 1982, 55(11): 3603-3606. [36] 阮德水, 李元哲. 相变贮热材料在太阳房中的应用研究[J]. 华中师范大学学报 (自然科学版), 1992(4): 456-460. RUAN Deshui, LI Yuanzhe. Research on the application of phase change materiai in the passive solar house[J]. Journal of Central China Normal University (Natural Sicence), 1992(4): 456-460. [37] 文越华, 张公正, 王正刚, 等. Na2SO4•10H2O复合相变储冷体系的热力学性质[J]. 北京理工大学学报, 1999, 19(6): 778-781. WEN Yuehua, ZHANG Gongzheng, WANG Zhenggang, et al. Thermodynamic properties of sodium sulfate-based complex phase-change cool storage system[J]. Transactions of Beijing Institute of Technology, 1999, 19(6): 778-781. [38] 刘栋, 徐云龙. 成核剂对CaCl2•6H2O相变材料储热性能的影响[J]. 太阳能学报, 2007, 28(7): 732-738. LIU Dong, XU Yunlong. Effect of nucleating agent on thermal properties of CaCl2•6H2O phase change material[J]. Acta Energy Solaris Sinica, 2007, 28(7): 732-738. [39] FEILCHENFELD H, SARIG S. Calcium chloride hexahydrate: A phase-changing material for energy storage[J]. Industrial & Engineering Chemistry Product Research & Development, 1985, 24(1): 130-133. [40] 刘欣, 徐涛, 高学农, 等. 十水硫酸钠的过冷和相分离探究[J]. 化工进展, 2011, 30(s1): 755-758. LIU Xin, XU Tao, GAO Xuenong, et al. Study on supercooling and phase separation of Na2SO4•10H2O[J]. Chemical Industrial and Engineering Prograss, 2011, 30(s1): 755-758. [41] 万福新, 王金波, 杜守琴, 等. 一种六水氯化钙相变蓄能材料组合物: CN 102134473A[P]. 2011-6-18. [42] BISWAS D R. Thermal energy storage using sodium sulfate decahydrate and water[J]. Solar Energy, 1977, 19(1): 99-100. [43] RYU H W, WOO S W, SHIN B C, et al. Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials[J]. Solar Energy Materials & Solar Cells, 1992, 27(2): 161-172. [44] MARKS S. An investigation of the thermal energy storage capacity of Glauber's salt with respect to thermal cycling[J]. Solar Energy, 1980, 25(3): 255-258. [45] 徐建霞, 柯秀芳. CH3COONa•3H2O相变储能性能研究[J]. 材料开发与应用, 2007, 22(6): 24-27. XU Jianxia, KE Xiufang. An investigation on phase change property of CH3COONa•3H2O as energy storage material[J]. Development and Application of Materials, 2007, 22(6): 24-27. [46] 陈爱英, 汪学英, 曹学增. 相变储能材料的研究进展与应用[J]. 材料导报, 2003, 17(5): 42-44. CHEN Aiying, WANG Xueying, CAO Xuezeng. Research and application of phase change material (PCM) used as energy storing material[J]. Materials Review, 2003, 17(5): 42-44. [47] CABEZA L F, ROCA J, NOGUÉS M, et al. Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 48 ℃ to 58 ℃ temperature range[J]. Materials and Corrosion, 2002, 53(12): 902-907. [48] FARRELL A J, NORTON B, KENNEDY D M. Corrosive effects of salt hydrate phase change materials used with aluminium and copper[J]. Journal of Materials Processing Technology, 2006, 175(s1/2/3): 198-205. [49] GARCÍA-ROMERO A, DELGADO A, URRESTI A, et al. Corrosion behaviour of several aluminium alloys in contact with a thermal storage phase change material based on Glauber's salt[J]. Corrosion Science, 2009, 51(6): 1263-1272. [50] MORENO P, MIRÓ L, SOLÉ A, et al. Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications[J]. Applied Energy, 2014, 125: 238-245. [51] SCHRÖDER J. R and D of systems for thermal energy storage in the temperature range from 25 ℃ to 150 ℃[M]. Germany: Springer Netherlands, 1980: 197-200. [52] HEINE D. The chemical compatibility of construction materials with latent heat storage materials[C]//Proceedings of the International Conference on Energy Storage, UK: Brighton, 1981. [53] ZALBA B, JOSÉ M A MARÍN, CABEZA L F, et al. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. [54] NAGANO K, OGAWA K, MOCHIDA T, et al. Performance of heat charge/discharge of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture to a single vertical tube for a latent heat storage system[J]. Appl. Therm. Eng., 2004, 24: 209-220. [55] PORISINI F C. Salt hydrates used for latent heat storage: Corrosion of metals and reliability of thermal performance[J]. Solar Energy, 1988, 41(2): 193-197. [56] RATHOD M K, BANERJEE J. Thermal stability of phase change materials used in latent heat energy storage systems: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 246-258. [57] FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion & Management, 2004, 45(9/10): 1597-1615. [58] KENISARIN M, MAHKAMOV K. Solar energy storage using phase change materials[J]. Renewable & Sustainable Energy Reviews, 2007, 11(9): 1913-1965. [59] MARKS S. An investigation of the thermal energy storage capacity of Glauber's salt with respect to thermal cycling[J]. Solar Energy, 1980, 25(3): 255-258. [60] KIMURA H, KAI J. Phase change stability of CaCl2•6H2O[J]. Solar Energy, 1984, 33(6): 557-563. [61] TYAGI V V, BUDDHI D. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage[J]. Solar Energy Materials&Solar Cells, 2008, 92(8): 891-899. [62] LANE G A, ROSSOW H E. Reversible phase change compositions of calcium chloride hexahydrate with potassium chloride: US 4613444[P]. 1986-9-23. [63] 方玉堂, 金策, 梁向晖, 等. 三水醋酸钠/甲酰胺复合相变材料的制备及性能[J]. 化工学报, 2015, 66(12): 5142-5148. FANG Yutang, JIN Ce, LIANG Xianghui, et al. Preparation and performance of sodium acetate trihydrate/formamide composite phase change material[J]. CIESC Journal, 2015, 66(12): 5142-5148. [64] 胡季平, 封银平, 郝新民. 十水硫酸钠相变储热材料的使用寿命及失效原因[J]. 新能源, 1990(10): 13-15. |
[1] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[2] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[3] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[4] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[5] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[6] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[7] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[8] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[9] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[10] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[11] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[12] | Ying SUN, Qin ZHAO, Bosi YIN, Tianyi MA. Performance of PTCDI//δ-MnO2 aqueous ammonium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1110-1120. |
[13] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[14] | Yongxue ZHANG, Zixi WANG, Bohui LU, Shengqi YANG, Hongyu ZHAO. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins [J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. |
[15] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||