Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 107-118.doi: 10.19799/j.cnki.2095-4239.2021.0381
• Energy Storage System and Engineering • Previous Articles Next Articles
Xinlong ZHU1(), Junyi WANG2, Jiashuang PAN2, Chuanzhi KANG2, Yitao ZOU1, Kaijie YANG1, Hong SHI2()
Received:
2021-07-26
Revised:
2021-10-10
Online:
2022-01-05
Published:
2022-01-10
Contact:
Hong SHI
E-mail:2496593640@qq.com;shihong@nuaa.edu.cn
CLC Number:
Xinlong ZHU, Junyi WANG, Jiashuang PAN, Chuanzhi KANG, Yitao ZOU, Kaijie YANG, Hong SHI. Present situation and development of thermal management system for battery energy storage system[J]. Energy Storage Science and Technology, 2022, 11(1): 107-118.
1 | 严晓辉, 陈海生. 国际储能产业政策及我国储能产业发展分析[J]. 中国能源, 2011, 33(11): 28-33. |
YAN X H,CHEN H S. International energy storage industry policy and development analysis of China's energy storage industry[J]. Energy of China, 2011, 33(11): 28-33. | |
2 | 周喜超. 电力储能技术发展现状及走向分析[J]. 热力发电, 2020, 49(8): 7-12. |
ZHOU X C. Development status and trend analysis of electric energy storage technology[J]. Thermal Power Generation, 2020, 49(8): 7-12. | |
3 | 储能技术专业学科发展行动计划[J].电力设备管理, 2020(2): 18-19. |
Action plan for Discipline Development of energy storage technology[J]. Power Equipment Management, 2020(2): 18-19. | |
4 | WANG S Q, LU L G, REN D S, et al. Experimental investigation on the feasibility of heat pipe-based thermal management system to prevent thermal runaway propagation[J]. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(3): doi: 10.1115/1.4042555. |
5 | WANG K K, GAO F, ZHU Y L, et al. Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge[J]. Energy, 2018, 149: 364-374. |
6 | 马勇, 张量, 王亦伟, 等. 储能用LiFePO4锂离子电池的热安全特性[J]. 电池, 2021, 51(1): 41-45. |
MA Y, ZHANG L, WANG Y W, et al. Thermal safety characteristics of LiFePO4 lithium-ion battery for energy storage[J]. Battery, 2021, 51(1): 41-45. | |
7 | ZHAO R, GU J J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium-ion batteries[J]. Journal of Power Sources, 2015, 273: 1089-1097. |
8 | FENG X N, SUN J, OUYANG M G, et al. Characterization of large format lithium-ion battery exposed to extremely high temperature[J]. Journal of Power Sources, 2014, 272: 457-467. |
9 | LI D J, DANILOV D L, GAO L, et al. Degradation mechanisms of C6/LiFePO4 batteries: experimental analyses of calendar ageing[J]. Electrochimica Acta, 2016, 210: 445-455. |
10 | AMINE K, LIU J, BELHAROUAK I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells[J]. Electrochemistry Communications, 2005, 7(7): 669-673. |
11 | AMINE K, LIU J, KANG S H, et al. Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications[J]. Journal of Power Sources, 2004, 129(1): 14-19. |
12 | ZHENG H H, SUN Q N, LIU G, et al. Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells[J]. Journal of Power Sources, 2012, 207: 134-140. |
13 | 赵世玺, 郭双桃, 赵建伟, 等. 锂离子电池低温特性研究进展[J]. 硅酸盐学报, 2016, 44(1): 19-28. |
ZHAO S X, GUO S T, ZHAO J W, et al. Research progress on low temperature characteristics of lithium ion batteries[J]. Journal of Silicate, 2016, 44(1): 19-28. | |
14 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. |
15 | LARCHER D, MACNEIL D, DAHN J. Comparison of the reactivity of various carbon electrode materials with electrolyte at elevated temperature[J]. Journal of the Electrochemical Society, 1999, 146(10): 3596-3602. |
16 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
17 | WARNER J. The handbook of lithium-ion battery pack design[M]. Journal of Rare Earths, 2016, 32(2): 217-222. |
18 | DICKINSON B, SWAN D. EV battery pack life: Pack degradation and solutions[C]//Future Transportation Technology Conference & Exposition, 1995. |
19 | 张培红, 袁威, 魏钟原, 等. 湿热环境下NCM三元锂离子电池热失控分析[J]. 东北大学学报(自然科学版), 2020, 41(6): 881-887. |
ZHANG P H, YUAN W, WEI Z Y, et al. Thermal runaway analysis of NCM lithium-ion battery in humid and hot environment[J]. Journal of Northeastern University (Natural Science), 2020, 41(6): 881-887. | |
20 | 聂磊, 秦杏, 张永跃, 等. 磷酸铁锂吸湿规律及对电池性能的影响[J]. 电池, 2018, 48(3): 179-181. |
NIE L, QIN X, ZHANG Y Y, et al. Hygroscopicity of LiFePO4 and its effects on the performance of battery[J]. Battery Bimonthly, 2018, 48(3): 179-181. | |
21 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
22 | KAZUO O, TAKAMASA O, MASATO N, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power Sources, 2006, 158(1): 535-542. |
23 | THOMAS K E, NEWMAN J. Thermal modeling of porous insertion electrodes[J]. Journal of the Electrochemical Society, 2003, 150(2): doi: 10.1149/1.1531194. |
24 | RAO L, NEWMAN J. Heat-generation rate and general energy balance for insertion battery systems[J]. Journal of the Electrochemical Society, 1997, 144(8): 2697-2704. |
25 | XIE Y, HE X J, HU X S, et al. An improved resistance-based thermal model for a pouch lithium-ion battery considering heat generation of posts[J]. Applied Thermal Engineering, 2020, 164(1): doi: 10.1016/j.applthermaleng.2020.115794. |
26 | MEYERS J P, DOYLE M, DARLING R M, et al. The impedance response of a porous electrode composed of intercalation particles[J]. Journal of the Electrochemical Society, 1999, 147(8): 2930-2940. |
27 | XIE Y, LI W, YANG Y, et al. A novel resistance-based thermal model for lithium-ion batteries[J]. International Journal of Energy Research, 2018, 42(14): 4481-4498. |
28 | WANG C, ZHANG G Q, MENG L K, et al. Liquid cooling based on thermal silica plate for battery thermal management system[J]. International Journal of Energy Research, 2017, 41(15): 2468-2479. |
29 | GIULIANO M R, PRASAD A K, ADVANI S G. Experimental study of an air-cooled thermal management system for high-capacity lithium-titanate batteries[J]. Journal of Power Sources, 2012, 216: 345-352. |
30 | HE F, LI X S, MA L. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2014, 72: 622-629. |
31 | LIN X F, PEREZ H E, MOHAN S, et al. A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of Power Sources, 2014, 257: 1-11. |
32 | XU M, ZHANG Z Q, WANG X, et al. A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process[J]. Energy, 2015, 80: 303-317. |
33 | LI J, CHENG Y, JIA M, et al. An electrochemical-thermal model based on dynamic responses forlithium iron phosphate battery[J]. Journal of Power Sources, 2014, 255(6): 130-143. |
34 | PANCHAL S, MATHEW M, FRASER R, et al. Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV[J]. Applied Thermal Engineering, 2018, 135: 123-132. |
35 | HU X, TANG X. Review of modeling techniques for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2017, 53(16): 20-31. |
36 | NEUBAUER J, PESARAN A, D COLEMAN, et al. Analyzing the effects of climate and thermal configuration on community energy storage systems (presentation)[C]//California, October 20-23, 2013. |
37 | National Renewable Energy Lab. Battery lifetime analysis and simulation tool (BLAST) documentation: Report of NREL scientific Group[R]. Neubauer : NREL, 2014. |
38 | GATTA F M, GERI A, MACCIONI M, et al. Arc-flash in large battery energy storage systems—Hazard calculation and mitigation[C]//2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2016. |
39 | WANG H T, TAO T, XU J, et al. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2020, 178: doi: 10.1016/j.applthermaleng.2020.115591. |
40 | LAI Y X, WU W X, CHEN K, et al. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack[J]. International Journal of Heat and Mass Transfer, 2019, 144: doi: 10.1016/j.ijheatmasstransfer.2019.118581. |
41 | VERMA A, SHASHIDHARA S, RAKSHIT D. A comparative study on battery thermal management using phase change material (PCM)[J]. Thermal Science and Engineering Progress, 2019, 11: 74-83. |
42 | PING P, PENG R Q, KONG D P, et al. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment[J]. Energy Conversion and Management, 2018, 176: 131-146. |
43 | BURBAN G, AYEL V, ALEXANDRE A, et al. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications[J]. Applied Thermal Engineering, 2013, 50(1): 94-103. |
44 | RAO Z H, WANG S F, WU M C, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion & Management, 2013, 65: 92-97. |
45 | TRAN T H, HARMAND S, DESMET B, et al. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery[J]. Applied Thermal Engineering, 2014, 63(2): 551-558. |
46 | 张子峰, 王林, 陈东红, 等. 集装箱储能系统散热及抗震性研究[J]. 储能科学与技术, 2013, 2(6): 642-648. |
ZHANG Z F, WANG L, CHEN D H, et al. Cooling and aseismicity study of the containerized energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(6): 642-648. | |
47 | 汤云峰. 一种储电集装箱散热系统: CN205454348U[P]. 2016-08-10. |
TANG Y F. A heat dissipation system for electric storage container: CN205454348U[P]. 2016-08-10. | |
48 | 李淼林, 臧孟炎, 李长玉, 等. 锂离子电池组风冷散热结构的优化[J]. 电池, 2020, 50(3): 266-270. |
LI M L, ZANG M Y, LI C Y, et al. Optimization of structure of air cooling heat dissipation for Li-ion batteries[J]. Battery Bimonthly, 2020, 50(3): 266-270. | |
49 | 王天波, 陈茜, 张兰春, 等. 电动汽车锂离子电池风冷散热结构优化设计[J]. 电源技术, 2020, 44(3): 371-376. |
WANG T B, CHEN Q, ZHANG L C, et al. Optimization design of air cooling heat dissipation structure for electric vehicle lithium ion battery[J]. Chinese Journal of Power Sources, 2020, 44(3): 371-376. | |
50 | SUN H G, DIXON R. Development of cooling strategy for an air cooled lithium-ion battery pack[J]. Journal of Power Sources, 2014, 272: 404-414. |
51 | YUAN H, WANG L F, WANG L Y. Battery thermal management system with liquid cooling and heating in electric vehicles[J]. Automotive Safety and Energy, 2012, 3(4): 371-380. |
52 | 梁昌杰, 陈方元, 秦大同. 混合动力汽车热管理系统流场和温度场CFD分析[C]// 2010年重庆市机械工程学会学术年会, 重庆, 2010.LIANG C J, CHEN Y F, QIN D T. CFD analysis of flow field and temperature field of hybrid electric vehicle thermal management system[C]//2010 Annual Academic Meeting of Chongqing society of Mechanical Engineering. ChongQing, 2010. |
53 | FAN L W, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 238: 301-312. |
54 | 杨凯杰, 裴后举, 朱信龙, 等. 某型集装箱储能电池模块的热设计研究及优化[J]. 储能科学与技术, 2020, 9(6): 1858-1863. |
YANG K J, PEI H J, ZHU X L, et al. Research and optimization of thermal design of a container energy storage battery pack[J]. Energy Storage Science and Technology, 2020, 9(6): 1858-1863. | |
55 | 邹燚涛, 裴后举, 施红, 等. 某型集装箱储能电池组冷却风道设计及优化[J]. 储能科学与技术, 2020, 9(6): 1864-1871. |
ZOU Y T, PEI H J, SHI H, et al. Design and optimization of the cooling duct system for the battery pack of a certain container energy storage[J]. Energy Storage Science and Technology, 2020, 9(6): 1864-1871. | |
56 | LU Z, YU X L, WEI L C, et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement[J]. Applied Thermal Engineering, 2018, 136: 28-40. |
57 | LIU Y Z, ZHANG J. Design a J-type air-based battery thermal management system through surrogate-based optimization[J]. Applied Energy, 2019, 252: doi: 10.1016/j.apenergy.2019.113426. |
58 | OUYANG D, CHEN M, HUANG Q, et al. A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasure[J]. Applide Sciences, 2019, 9(12): doi: 10.3390/app9122483. |
59 | LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Characteristics of lithium-ion batteries during fire tests[J]. Journal of Power Sources. 2014, 271: 414-420. |
60 | LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Author Correction: Toxic fluoride gas emissions from lithium-ion battery fires[J]. Scientific Reports, 2018, 8(1): doi: 10.1038/s41598-018-22957-8. |
61 | 张青松, 白伟, 程相静, 等. 哈龙替代灭火剂抑制空运锂离子电池试验研究[J]. 消防科学与技术, 2017, 36(9): 1262-1265. |
ZHANG Q S, BAI W, CHENG X J, et al. Inhibition of thermal runaway by Halon replacement fire extinguishing agent on airborne lithium-ion battery[j]. Fire science and Technology, 36(9): 1262-1265. | |
62 | RISE Research Institutes of Sweden. Lion fire: Extinguishment and mitigation of fires in Li-ion batteries at sea[R]. Andersson: RISE, 2018. |
63 | 李毅, 于东兴, 张少禹, 等. 典型锂离子电池火灾灭火试验研究[J]. 安全与环境学报, 2015, 15(6): 120-125. |
LI Y, YU D X, ZHANG S Y, et al. On the fire extinguishing tests of typical Lithium-ion battery[J]. Journal of Safety and Environment, 2015, 15(6): 120-125. | |
64 | 刘昱君, 段强领, 黎可, 等. 多种灭火剂扑救大容量锂离子电池火灾的实验研究[J]. 储能科学与技术, 2018, 7(6): 1105-1112. |
LIU Y J, DUAN Q L, LI K, et al. Experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents[J]. Energy Storage Science and Technology, 2018, 7(6): 1105-1112. | |
65 | WANG Q S, LI K, WANG Y, et al. The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium-ion battery fire[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(4): doi: 10.1115/1.4039418. |
66 | Federal Aviation Administration. Flammability assessment of bulk-packed, rechargeable lithium-ion cells in transport category aircraft[R]. Webster : FAA, 2007. |
67 | Federal Aviation Administration. Flammability assessment of lithium-ion and lithium-ion polymer battery cells designed for aircraft power usage[R]. Summer : FAA, 2010. |
68 | LIU Y J, DUAN Q L, XU J J, et al. Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing lithium-ion battery fires[J]. RSC Advances, 2018, 8(73): 42223-42232. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[5] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[6] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[7] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[8] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[9] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[10] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[11] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[12] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[13] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[14] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[15] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||