Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 98-106.doi: 10.19799/j.cnki.2095-4239.2021.0229
• Energy Storage System and Engineering • Previous Articles Next Articles
Liangbo QIAO1,3(), Xiaohu ZHANG1,2(), Xianzhong SUN1,2, Xiong ZHANG1,2, Yanwei MA1,2
Received:
2021-05-12
Revised:
2021-07-20
Online:
2022-01-05
Published:
2022-01-10
Contact:
Xiaohu ZHANG
E-mail:qiaoliangb@163.com;xhzhang@mail.iee.ac.cn
CLC Number:
Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system[J]. Energy Storage Science and Technology, 2022, 11(1): 98-106.
1 | 易红明, 吕志强, 张华民, 等. 钠离子电池钒基聚阴离子型正极材料的发展现状与应用挑战[J]. 储能科学与技术, 2020, 9(5): 1350-1369. |
YI H M, LYU Z Q, ZHANG H M, et al. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369. | |
2 | 李磊, 许燕. 锂离子动力电池发展现状及趋势分析[J]. 中国锰业, 2020, 38(5): 9-13, 21. |
LI L, XU Y. An analysis of the development status and trend of lithium ion power battery[J]. China's Manganese Industry, 2020, 38(5): 9-13, 21. | |
3 | 张熊, 孙现众, 马衍伟. 高比能超级电容器的研究进展[J]. 中国科学: 化学, 2014, 44(7): 1081-1096. |
ZHANG X, SUN X Z, MA Y W. Research of supercapacitors with high energy density[J]. Scientia Sinica (Chimica), 2014, 44(7): 1081-1096. | |
4 | ZHANG X H, ZHANG X, SUN X Z, et al. Electrochemical impedance spectroscopy study of lithium-ion capacitors: Modeling and capacity fading mechanism[J]. Journal of Power Sources, 2021, 488: doi: 10.1016/j.jpowsour.2021.229454. |
5 | 张晓虎, 孙现众, 张熊, 等. 锂离子电容器在新能源领域应用展望[J]. 电工电能新技术, 2020, 39(11): 48-58. |
ZHANG X H, SUN X Z, ZHANG X, et al. Prospect of lithium-ion capacitor application in new energy field[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(11): 48-58. | |
6 | 孙现众, 张熊, 王凯, 等. 高能量密度的锂离子混合型电容器[J]. 电化学, 2017, 23(5): 586-603. |
SUN X Z, ZHANG X, WANG K, et al. Lithium ion hybrid capacitor with high energy density[J]. Journal of Electrochemistry, 2017, 23(5): 586-603. | |
7 | HANNAN M A, HOQUE M M, MOHAMED A, et al. Review of energy storage systems for electric vehicle applications: Issues and challenges[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 771-789. |
8 | 刘庆华, 张赛, 蒋明哲, 等. 低成本液流电池储能技术研究[J]. 储能科学与技术, 2019, 8(S1): 60-64. |
LIU Q H, ZHANG S, JIANG M Z, et al. Study on the low-cost flow battery technologies for energy storage[J]. Energy Storage Science and Technology, 2019, 8(S1): 60-64. | |
9 | BOCKLISCH T. Hybrid energy storage approach for renewable energy applications[J]. Journal of Energy Storage, 2016, 8: 311-319. |
10 | KOUCHACHVILI L, YAÏCI W, ENTCHEV E. Hybrid battery/supercapacitor energy storage system for the electric vehicles[J]. Journal of Power Sources, 2018, 374: 237-248. |
11 | HEMMATI R, SABOORI H. Emergence of hybrid energy storage systems in renewable energy and transport applications—A review[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 11-23. |
12 | CHONG L W, WONG Y W, RAJKUMAR R K, et al. Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems[J]. Renewable and Sustainable Energy Reviews, 2016, 66: 174-189. |
13 | AHMAD H S, IONEL D M, NASIRI A. Modeling and management of batteries and ultracapacitors for renewable energy support in electric power systems-an overview[J]. Electric Power Components and Systems, 2015, 43(12): 1434-1452. |
14 | CERICOLA D, KÖTZ R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits[J]. Electrochimica Acta, 2012, 72: 1-17. |
15 | MANZETTI S, MARIASIU F. Electric vehicle battery technologies: From present state to future systems[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 1004-1012. |
16 | SONG Z Y, LI J Q, HOU J, et al. The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study[J]. Energy, 2018, 154: 433-441. |
17 | BURKE A, MILLER M. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications[J]. Journal of Power Sources, 2011, 196(1): 514-522. |
18 | ZHANG Y, XU Y J, GUO H, et al. A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations[J]. Renewable Energy, 2018, 125: 121-132. |
19 | JIANG Q Y, HONG H S. Wavelet-based capacity configuration and coordinated control of hybrid energy storage system for smoothing out wind power fluctuations[J]. IEEE Transactions on Power Systems, 2013, 28(2): 1363-1372. |
20 | MENDIS N, MUTTAQI K M, PERERA S. Management of low- and high-frequency power components in demand-generation fluctuations of a DFIG-based wind-dominated RAPS system using hybrid energy storage[J]. IEEE Transactions on Industry Applications, 2014, 50(3): 2258-2268. |
21 | MA C, DONG S, LIAN J J, et al. Multi-objective sizing of hybrid energy storage system for large-scale photovoltaic power generation system[J]. Sustainability, 2019, 11(19): doi: 10.3390/su11195441. |
22 | WANG G S, CIOBOTARU M, AGELIDIS V G. Power smoothing of large solar PV plant using hybrid energy storage[J]. IEEE Transactions on Sustainable Energy, 2014, 5(3): 834-842. |
23 | 秦强强, 张骄, 李宇杰, 等. 基于列车运行状态的城轨地面混合储能装置分时段控制策略[J]. 电工技术学报, 2019, 34(S2): 760-769. |
QIN Q Q, ZHANG J, LI Y J, et al. Research on time-phased control strategy of urban rail ground hybrid energy storage device based on train operation status[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 760-769. | |
24 | 陈维荣, 卜庆元, 刘志祥, 等. 燃料电池混合动力有轨电车动力系统设计[J]. 西南交通大学学报, 2016, 51(3): 430-436. |
CHEN W R, BU Q Y, LIU Z X, et al. Power system design for a fuel cell hybrid power tram[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 430-436. | |
25 | 章宝歌, 李萍, 张振, 等. 应用于城轨列车混合储能系统的能量管理策略[J]. 储能科学与技术, 2020, 9(1): 204-210. |
ZHANG B G, LI P, ZHANG Z, et al. Energy management strategy of hybrid energy storage system for urban rail trains[J]. Energy Storage Science and Technology, 2020, 9(1): 204-210. | |
26 | 杨浩丰, 刘冲, 李彬, 等. 基于列车运行工况的城轨地面式混合储能系统控制策略研究[J]. 电工技术学报, 2021, 36(S1): 168-178. |
YANG H F, LIU C, LI B, et al. Research on control strategy of urban rail ground hybrid energy storage device based on train operating condition[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 168-178. | |
27 | LALDIN O, MOSHIRVAZIRI M, TRESCASES O. Predictive algorithm for optimizing power flow in hybrid ultracapacitor/battery storage systems for light electric vehicles[J]. IEEE Transactions on Power Electronics, 2013, 28(8): 3882-3895. |
28 | 郭亮, 贾彦, 康丽, 等. 一种蓄电池和超级电容器复合储能系统[J]. 储能科学与技术, 2017, 6(2): 296-301. |
GUO L, JIA Y, KANG L, et al. The composite storage system using lead storage battery and EDLC[J]. Energy Storage Science and Technology, 2017, 6(2): 296-301. | |
29 | BOCKLISCH T. Hybrid energy storage approach for renewable energy applications[J]. Journal of Energy Storage, 2016, 8: 311-319. |
30 | BARCELLONA S, PIEGARI L, VILLA A. Passive hybrid energy storage system for electric vehicles at very low temperatures[J]. Journal of Energy Storage, 2019, 25: doi: 10.1016/j.est.2019.100833. |
31 | XIE Q, KIM Y, WANG Y Z, et al. Principles and efficient implementation of charge replacement in hybrid electrical energy storage systems[J]. IEEE Transactions on Power Electronics, 2014, 29(11): 6110-6123. |
32 | FENG X, GOOI H B, CHEN S X. Hybrid energy storage with multimode fuzzy power allocator for PV systems[J]. IEEE Transactions on Sustainable Energy, 2014, 5(2): 389-397. |
33 | CHANDRASEKARAN R, BI W, FULLER T F. Robust design of battery/fuel cell hybrid systems—Methodology for surrogate models of Pt stability and mitigation through system controls[J]. Journal of Power Sources, 2008, 182(2): 546-557. |
34 | SUHA YAZICI M, YAVASOGLU H A, EROGLU M. A mobile off-grid platform powered with photovoltaic/wind/battery/fuel cell hybrid power systems[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11639-11645. |
35 | WU W, CHRISTIANA V I, CHEN S N, et al. Design and techno-economic optimization of a stand-alone PV (photovoltaic)/FC (fuel cell)/battery hybrid power system connected to a wastewater-to-hydrogen processor[J]. Energy, 2015, 84: 462-472. |
36 | KHALIGH A, RAHIMI A M, LEE Y J, et al. Digital control of an isolated active hybrid fuel cell/Li-ion battery power supply[J]. IEEE Transactions on Vehicular Technology, 2007, 56(6): 3709-3721. |
37 | ORTUZAR M, MORENO J, DIXON J. Ultracapacitor-based auxiliary energy system for an electric vehicle: Implementation and evaluation[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 2147-2156. |
38 | AMIN, BAMBANG R T, ROHMAN A S, et al. Energy management of fuel cell/battery/supercapacitor hybrid power sources using model predictive control[J]. IEEE Transactions on Industrial Informatics, 2014, 10(4): 1992-2002. |
39 | XU L F, LI J Q, HUA J F, et al. Optimal vehicle control strategy of a fuel cell/battery hybrid city bus[J]. International Journal of Hydrogen Energy, 2009, 34(17): 7323-7333. |
40 | FADIL H, GIRI F, GUERRERO J M, et al. Modeling and nonlinear control of a fuel cell/supercapacitor hybrid energy storage system for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3011-3018. |
41 | TAMURA S. Economic analysis of hybrid battery energy storage systems applied to frequency control in power system[J]. Electrical Engineering in Japan, 2016, 195(1): 24-31. |
42 | SOLTANI M, RONSMANS J, KAKIHARA S, et al. Hybrid battery/lithium-ion capacitor energy storage system for a pure electric bus for an urban transportation application[J]. Applied Sciences, 2018, 8(7): doi: 10.3390/app8071176. |
[1] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[2] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[3] | Bin GUO, Jie XING, Fei YAO, Xiaomin JING. Optimal configuration of user-side hybrid energy storage based on bi-level programming model [J]. Energy Storage Science and Technology, 2022, 11(2): 615-622. |
[4] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[5] | Ziyan ZHANG, Junyan ZHANG. International competition of key energy storage technologies based on high-quality patents [J]. Energy Storage Science and Technology, 2022, 11(1): 321-334. |
[6] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
[7] | Zhonghao RAO, Chenzhen LIU, Yutao HUO, Jiateng ZHAO, Changhui LIU. Practice and exploration of teaching for interdisciplinary outstanding and innovative talents training oriented to energy storage technology [J]. Energy Storage Science and Technology, 2021, 10(3): 1206-1212. |
[8] | ZHANG Qian, WU Xiaolan, BAI Zhifeng, CHENG Jingyi. Research on adaptive energy management strategy of hybrid energy storage system in electric vehicles [J]. Energy Storage Science and Technology, 2020, 9(3): 878-884. |
[9] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[10] | ZHANG Baoge, ZHANG Zhen, WANG Donghao, LI Ping, RONG Yao. A bidirectional DC/DC converter for hybrid energy storage system [J]. Energy Storage Science and Technology, 2020, 9(1): 178-185. |
[11] | ZHANG Baoge, LI Ping, ZHANG Zhen, WANG Yu, RONG Yao. Energy management strategy of hybrid energy storage system for urban rail trains [J]. Energy Storage Science and Technology, 2020, 9(1): 204-210. |
[12] | LIU Qinghua, ZHANG Sai, JIANG Mingzhe, WANG Qiushi, XING Xueqi, YANG Hong, HUANG Feng, LEMMON P John, MIAO Ping. Study on the low-cost flow battery technologies for energy storage [J]. Energy Storage Science and Technology, 2019, 8(S1): 60-64. |
[13] | XIA Xinmao, GUAN Honghao, DING Pengfei, MENG Gaojun. Capacity allocation and optimization strategy of an energy storage system based on an improved quantum genetic algorithm [J]. Energy Storage Science and Technology, 2019, 8(3): 551-558. |
[14] | WANG Jianglin, XU Xueliang, DING Qingqing, ZHU Junping, MA Yongquan, ZHAO Lei, LIU Xiaowei. Application and prospect of zinc nickel battery in energy storage technology [J]. Energy Storage Science and Technology, 2019, 8(3): 506-511. |
[15] | LI Ruimin, ZHANG Xinjing, XU Yujie, SUN Wenwen, ZHOU Xuezhi, GUO Cong, CHEN Haisheng. Research on optimal confguration of hybrid energy storage capacity for wind-solar generation system [J]. Energy Storage Science and Technology, 2019, 8(3): 512-522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||