Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2879-2890.doi: 10.19799/j.cnki.2095-4239.2021.0635
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Linwang DENG1(), Tianyu FENG1(), Shiwei SHU1, Zifeng ZHANG2, Bin GUO1
Received:
2021-11-26
Revised:
2021-12-13
Online:
2022-09-05
Published:
2022-08-30
Contact:
Tianyu FENG
E-mail:deng.linwang@fdbatt.com;feng.tianyu@fdbatt.com
CLC Number:
Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890.
Table 1
Comparison of different charging strategies"
类型 | 充电策略 | 时间 | 效率 | 温升 | 寿命 | 参考文献 | |
---|---|---|---|---|---|---|---|
充电波形 控制方法 | 优化恒流恒压充电 | CV-CC-CV充电策略 | 5 min充电至30% | — | — | 无差别 | [ |
CV阶段充电电流优化策略 | 提升23% | 提高1.6% | — | — | [ | ||
台阶优化充电 | 电压上限模式 | 40 min充电至70% | — | — | 提升60% | [ | |
降低11.2% | 提高1.02% | — | 延长57% | [ | |||
缩短56.8% | — | — | 延长21% | [ | |||
恒定SOC间隔模式 | 相比(80 min) 减少了15 min | — | — | — | [ | ||
脉冲充电策略 | 电流脉冲充电 | 相比3 h,缩减到0.85 h | — | — | — | [ | |
电压脉冲充电 | 提高14% | 提高3.4% | — | — | [ | ||
交流充电策略 | 交流充电 | 提高2% | 提高45.8% | 提高16.1% | — | [ | |
基于电池模型的控制方法 | 等效电路模型 | 提高0.42% | — | — | — | [ | |
相比传统6~6.5 min, 耗时5.5 min | — | — | 寿命老化 加剧15% | [ | |||
减少8.56% | — | 减少67.3% | — | [ | |||
电化学模型 | 减少50% | — | — | — | [ | ||
52 min完成96.8% | — | — | — | [ | |||
相比2 C充电0~60% 缩减43% | — | — | 减低23% | [ | |||
基于预加热提高充电倍率的方法 | 4 C | — | 升至60 ℃ | — | [ | ||
6 C | — | 升至60 ℃ | — | [ |
1 | WANG Y S, SPERLING D, TAL G, et al. China's electric car surge[J]. Energy Policy, 2017, 102: 486-490. |
2 | 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136. |
FU S Y, LYU T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136. | |
3 | 葛昊, 李哲, 张剑波. 锂离子电池开路电压曲线形状与多阶段容量损失[J]. 储能科学与技术, 2019, 8(6): 1089-1095. |
GE H, LI Z, ZHANG J B. Multi-stage capacity loss of lithium-ion batteries originating from the multi-slope nature of open circuit voltage curves[J]. Energy Storage Science and Technology, 2019, 8(6): 1089-1095. | |
4 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[M]//Materials for Sustainable Energy. UK: Co-Published with Macmillan Publishers Ltd, 2010: 171-179. |
5 | MEENA N, BAHARWANI V, SHARMA D, et al. Charging and discharging characteristics of Lead acid and Li-ion batteries[C]// 2014 Power and energy systems: Towards sustainable energy. IEEE, 2014: 1-3. |
6 | CHEN L R, HSU R C, LIU C S. A design of a grey-predicted Li-ion battery charge system[J]. IEEE Transactions on Industrial Electronics, 2008, 55(10): 3692-3701. |
7 | SIKHA G, RAMADASS P, HARAN B S, et al. Comparison of the capacity fade of Sony US 18650 cells charged with different protocols[J]. Journal of Power Sources, 2003, 122(1): 67-76. |
8 | WANG S C, LIU Y H. A PSO-based fuzzy-controlled searching for the optimal charge pattern of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2983-2993. |
9 | LIU Y H, TENG J H, LIN Y C. Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1328-1336. |
10 | CHEN L R. A design of an optimal battery pulse charge system by frequency-varied technique[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 398-405. |
11 | CHEN L R. Design of duty-varied voltage pulse charger for improving Li-ion battery-charging response[J]. IEEE Transactions on Industrial Electronics, 2009, 56(2): 480-487. |
12 | CHO S Y, LEE I O, BAEK J I, et al. Battery impedance analysis considering DC component in sinusoidal ripple-current charging[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1561-1573. |
13 | CHEN L R, WU S L, SHIEH D T, et al. Sinusoidal-ripple-current charging strategy and optimal charging frequency study for Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 88-97. |
14 | NOTTEN P H L, VELD J H G O H, VAN BEEK J R G. Boostcharging Li-ion batteries: A challenging new charging concept[J]. Journal of Power Sources, 2005, 145(1): 89-94. |
15 | VO T T, CHEN X P, SHEN W X, et al. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation[J]. Journal of Power Sources, 2015, 273: 413-422. |
16 | LUO Y F, LIU Y H, WANG S C. Search for an optimal multistage charging pattern for lithium-ion batteries using the Taguchi approach[C]// TENCON 2009-2009 IEEE Region 10 Conference. IEEE, 2009: 1-5. |
17 | INOA E, WANG J. PHEV charging strategies for maximized energy saving[J]. IEEE Transactions on Vehicular Technology, 2011, 60(7): 2978-2986. |
18 | YE M, GONG H R, XIONG R, et al. Research on the battery charging strategy with charging and temperature rising control awareness[J]. IEEE Access, 2018, 6: 64193-64201. |
19 | CHU Z Y, FENG X N, LU L G, et al. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model[J]. Applied Energy, 2017, 204: 1240-1250. |
20 | SUTHAR B, NORTHROP P W C, BRAATZ R D, et al. Optimal charging profiles with minimal intercalation-induced stresses for lithium-ion batteries using reformulated pseudo 2-dimensional models[J]. Journal of the Electrochemical Society, 2014, 161(11): F3144-F3155. |
21 | PEREZ H E, HU X S, DEY S, et al. Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7761-7770. |
22 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
23 | HAN X B, OUYANG M G, LU L G, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle (I): Diffusion simplification and single particle model[J]. Journal of Power Sources, 2015, 278: 802-813. |
24 | PEREZ H E, DEY S, HU X, et al. Optimal charging of Li-ion batteries via a single particle model with electrolyte and thermal dynamics[J]. Journal of the Electrochemical Society, 2017, 164(7): A1679-A1687. |
25 | LIU Y H, HSIEH C H, LUO Y F. Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays[J]. IEEE Transactions on Energy Conversion, 2011, 26(2): 654-661. |
26 | LI J, MURPHY E, WINNICK J, et al. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries[J]. Journal of Power Sources, 2001, 102(1/2): 302-309. |
27 | PURUSHOTHAMAN B K, LANDAU U. Rapid charging of lithium-ion batteries using pulsed currents[J]. Journal of the Electrochemical Society, 2006, 153(3): A533. |
28 | ARYANFAR A, BROOKS D, MERINOV B V, et al. Dynamics of lithium dendrite growth and inhibition: Pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1721-1726. |
29 | BESSMAN A, SOARES R, VADIVELU S, et al. Challenging sinusoidal ripple-current charging of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4750-4757. |
30 | KLEIN R, CHATURVEDI N A, CHRISTENSEN J, et al. Electrochemical model based observer design for a lithium-ion battery[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 289-301. |
31 | METHEKAR R, RAMADESIGAN V, BRAATZ R D, et al. Optimum charging profile for lithium-ion batteries to maximize energy storage and utilization[J]. ECS Transactions, 2010, 25(35): 139-146. |
32 | KLEIN R, CHATURVEDI N A, CHRISTENSEN J, et al. State estimation of a reduced electrochemical model of a lithium-ion battery[C]// Proceedings of the 2010 American Control Conference. IEEE, 2010: 6618-6623. |
33 | SONG M, CHOE S Y. Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery[J]. Journal of Power Sources, 2019, 436: 226835. |
34 | YANG X G, LIU T, GAO Y, et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries[J]. Joule, 2019, 3(12): 3002-3019. |
35 | YANG X G, LIU T, WANG C Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles[J]. Nature Energy, 2021, 6(2): 176-185. |
36 | WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. |
37 | YANG X G, ZHANG G S, GE S H, et al. Fast charging of lithium-ion batteries at all temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7266-7271. |
[1] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[2] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[3] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[4] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[5] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[6] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[7] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[8] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[9] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[10] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[11] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[12] | Yong XIAO, Jun XU. Risk assessment of battery safe operation in energy storage power station based on combination weighting and TOPSIS [J]. Energy Storage Science and Technology, 2022, 11(8): 2574-2584. |
[13] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[14] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[15] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||