Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2866-2878.doi: 10.19799/j.cnki.2095-4239.2022.0354
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Received:
2022-06-27
Revised:
2022-07-15
Online:
2022-09-05
Published:
2022-08-30
Contact:
Chuanwei YAN
E-mail:a.tang@imr.ac.cn;cwyan@imr.ac.cn
CLC Number:
Ao TANG, Chuanwei YAN. Modelling and simulation of flow batteries: Recent progress and prospects[J]. Energy Storage Science and Technology, 2022, 11(9): 2866-2878.
1 | RYCHCIK M, SKYUAS-KAZACOS M. Characteristics of a new all-vanadium redox flow hattery[J]. Journal of Power Sources, 1988, 22(1): 59-67. |
2 | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022,11: doi:10.19799/j.cnki.2095-4239.2022.0246. |
ZHANG H M. The development, cost analysis with various duration and prospect of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11: doi:10.19799/j.cnki.2095-4239.2022.0246. | |
3 | 姚祯, 王锐, 阳雪, 等. 锌铁液流电池研究现状及展望[J]. 储能科学与技术, 2022, 11(1): 78-88. |
YAO Z, WANG R, YANG X, et al. Current situations and prospects of zinc-iron flow battery[J]. Energy Storage Science and Technology, 2022, 11(1): 78-88. | |
4 | YUAN Z Z, YIN Y B, XIE C X, et al. Advanced materials for zinc-based flow battery: Development and challenge[J]. Advanced Materials, 2019, 31: doi:10.1002/adma.201902025. |
5 | 郭定域, 蒋峰景, 张竹涵. 铁基氧化还原液流电池研究进展及展望[J]. 储能科学与技术, 2020, 9(6): 1668-1677. |
GUO D Y, JIANG F J, ZHANG Z H. Research progresses in iron-based redox flow batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1668-1677. | |
6 | 彭康, 刘俊敏, 唐珙根, 等. 水系有机液流电池电化学活性分子研究现状及展望[J]. 储能科学与技术, 2022, 11(4): 1246-1263. |
PENG K, LIU J M, TANG G G, et al. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263. | |
7 | 严川伟. 大规模长时储能与全钒液流电池产业发展[J]. 太阳能, 2022(5): 14-22. |
YAN C W. Large energy storage and vanadium flow battery industrialization[J]. Solar Energy, 2022(5): 14-22. | |
8 | SHAH A A, WATT-SMITH M J, WALSH F C. A dynamic performance model for redox-flow batteries involving soluble species[J]. Electrochimica Acta, 2008, 53(27): 8087-8100. |
9 | SHAH A A, AL-FETLAWI H, WALSH F C. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery[J]. Electrochimica Acta, 2010, 55(3): 1125-1139. |
10 | AL-FETLAWI H, SHAH A A, WALSH F C. Modelling the effects of oxygen evolution in the all-vanadium redox flow battery[J]. Electrochimica Acta, 2010, 55(9): 3192-3205. |
11 | YOU D J, ZHANG H M, CHEN J. A simple model for the vanadium redox battery[J]. Electrochimica Acta, 2009, 54(27): 6827-6836. |
12 | YUE M, LV Z Q, ZHENG Q, et al. Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries[J]. Applied Energy, 2019, 235: 495-508. |
13 | LEI Y, ZHANG B W, BAI B F, et al. A transient electrochemical model incorporating the donnan effect for all-vanadium redox flow batteries[J]. Journal of Power Sources, 2015, 299: 202-211. |
14 | TANG A, BAO J, SKYLLAS-KAZACOS M. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery[J]. Journal of Power Sources, 2011, 196(24): 10737-10747. |
15 | XIONG B Y, ZHAO J Y, TSENG K J, et al. Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery[J]. Journal of Power Sources, 2013, 242: 314-324. |
16 | WEI Z B, ZHAO J Y, SKYLLAS-KAZACOS M, et al. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery[J]. Journal of Power Sources, 2014, 260: 89-99. |
17 | BADRINARAYANAN R, ZHAO J Y, TSENG K J, et al. Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer[J]. Journal of Power Sources, 2014, 270: 576-586. |
18 | MA X K, ZHANG H M, XING F. A three-dimensional model for negative half cell of the vanadium redox flow battery[J]. Electrochimica Acta, 2011, 58: 238-246. |
19 | ZHENG Q, XING F, LI X F, et al. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery[J]. Journal of Power Sources, 2016, 324: 402-411. |
20 | ZHANG B W, LEI Y, BAI B F, et al. A two-dimensional model for the design of flow fields in vanadium redox flow batteries[J]. International Journal of Heat and Mass Transfer, 2019, 135: 460-469. |
21 | 王振宇, 郭子啸, 范新庄, 等. 全钒液流电池中蛇型和插指型流道的对比[J]. 储能科学与技术, 2022, 11(4): 1121-1130. |
WANG Z Y, GUO Z X, FAN X Z, et al. Comparative study between serpentine and interdigitated flow fields for vanadium redox flow batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1121-1130. | |
22 | GURIEFF N, CHEUNG C Y, TIMCHENKO V, et al. Performance enhancing stack geometry concepts for redox flow battery systems with flow through electrodes[J]. Journal of Energy Storage, 2019, 22: 219-227. |
23 | YIN C, GAO Y, XIE G Y, et al. Three dimensional multi-physical modeling study of interdigitated flow field in porous electrode for vanadium redox flow battery[J]. Journal of Power Sources, 2019, 438: doi:10.1016/j.jpowsour.2019.227023. |
24 | HAO H H, ZHANG Q, FENG Z Y, et al. Regulating flow field design on carbon felt electrode towards high power density operation of vanadium flow batteries[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej.2022.138170. |
25 | XIONG J, JING M H, TANG A, et al. Mechanical modelling and simulation analyses of stress distribution and material failure for vanadium redox flow battery[J]. Journal of Energy Storage, 2018, 15: 133-144. |
26 | XIONG J, WANG S L, LI X R, et al. Mechanical behavior and Weibull statistics based failure analysis of vanadium flow battery stacks[J]. Journal of Power Sources, 2019, 412: 272-281. |
27 | XIONG J, SONG Y X, WANG S L, et al. Evaluation of the influence of clamping force in electrochemical performance and reliability of vanadium redox flow battery[J]. Journal of Power Sources, 2019, 431: 170-181. |
28 | TANG A, MCCANN J, BAO J, et al. Investigation of the effect of shunt current on battery efficiency and stack temperature in vanadium redox flow battery[J]. Journal of Power Sources, 2013, 242: 349-356. |
29 | TANG A, BAO J, SKYLLAS-KAZACOS M. Studies on pressure losses and flow rate optimization in vanadium redox flow battery[J]. Journal of Power Sources, 2014, 248: 154-162. |
30 | TANG A, TING S, BAO J, et al. Thermal modelling and simulation of the all-vanadium redox flow battery[J]. Journal of Power Sources, 2012, 203: 165-176. |
31 | TANG A, BAO J, SKYLLAS-KAZACOS M. Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery[J]. Journal of Power Sources, 2012, 216: 489-501. |
32 | TANG A, SKYLLAS-KAZACOS M. Simulation analysis of regional temperature effects and battery management schedules for a residential-scale vanadium redox flow battery system[J]. ChemPlusChem, 2015, 80(2): 368-375. |
33 | WANDSCHNEIDER F T, RÖHM S, FISCHER P, et al. A multi-stack simulation of shunt currents in vanadium redox flow batteries[J]. Journal of Power Sources, 2014, 261: 64-74. |
34 | YE Q, HU J, CHENG P, et al. Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery[J]. Journal of Power Sources, 2015, 296: 352-364. |
35 | GUARNIERI M, TROVÒ A, D'ANZI A, et al. Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments[J]. Applied Energy, 2018, 230: 1425-1434. |
36 | MORO F, TROVÒ A, BORTOLIN S, et al. An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment[J]. Journal of Power Sources, 2017, 340: 229-241. |
37 | CHEN H, LI X R, GAO H, et al. Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay[J]. Applied Energy, 2019, 247: 13-23. |
38 | CHEN H, WANG S L, GAO H, et al. Analysis and optimization of module layout for multi-stack vanadium flow battery module[J]. Journal of Power Sources, 2019, 427: 154-164. |
39 | CHEN F Y, GAO H, CHEN H, et al. Evaluation of thermal behaviors for the multi-stack vanadium flow battery module[J]. Journal of Energy Storage, 2020, 27: doi:10.1016/j.est.2019.101081. |
40 | CHEN H, CHENG M, FENG X, et al. Analysis and optimization for multi-stack vanadium flow battery module incorporating electrode permeability[J]. Journal of Power Sources, 2021, 515: doi:10. 1016/j.jpowsour.2021.230606. |
[1] | Zhizhang YUAN, Zonghao LIU, Xianfeng LI. Research progress of flow battery technologies [J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. |
[2] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[3] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[4] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[5] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[6] | Hengfei LU, Xingwu XU, Shengbin LING, Yongkuan SHEN. Development and application of a LFP pouch cell module [J]. Energy Storage Science and Technology, 2022, 11(5): 1468-1474. |
[7] | Xuan WANG, Qiang YE. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack [J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. |
[8] | Kang PENG, Junmin LIU, Gonggen TANG, Zhengjin YANG, Tongwen XU. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263. |
[9] | Zhenyu WANG, Zixiao GUO, Xinzhuang FAN, Tianshou ZHAO. Comparative study between serpentine and interdigitated flow fields for vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1121-1130. |
[10] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[11] | Xiaobin XU, Yefei XU, Hengyun ZHANG, Shunliang ZHU, Haifeng WANG. Multiobjective optimization of thermal performance and grouping efficiency for air cooling battery module [J]. Energy Storage Science and Technology, 2022, 11(2): 553-562. |
[12] | Ang LI, Xiaomeng LI, Lin YANG, Han WANG, Junfan XIANG, Yuhan LIU. Compression force calculation of redox flow battery [J]. Energy Storage Science and Technology, 2022, 11(2): 609-614. |
[13] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Numerical study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(1): 291-296. |
[14] | Jun WANG, Zhuangzhuang JIA, Peng QIN, Zheng HUANG, Jingyun WU, Wen QI, Qingsong WANG. Simulation of thermal runaway gas diffusion in LiFePO4 battery module [J]. Energy Storage Science and Technology, 2022, 11(1): 185-192. |
[15] | Zihan YUAN, Xiao YAN, Tao YANG. Quantitative analysis of key battery performance parameters of aging lithium battery module [J]. Energy Storage Science and Technology, 2022, 11(1): 221-227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||