Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2386-2397.doi: 10.19799/j.cnki.2095-4239.2021.0723
• Energy Storage Education • Previous Articles Next Articles
Shufeng DONG1(), Lingchong LIU1,2, Kunjie TANG1, Haiqi ZHAO1,2, Chengsi XU1, Liheng LIN1
Received:
2021-12-31
Revised:
2022-01-13
Online:
2022-07-05
Published:
2022-06-29
Contact:
Shufeng DONG
E-mail:dongshufeng@zju.edu.cn
CLC Number:
Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller[J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397.
Table 5
Register configuration file"
序号 | 寄存器类型 | 起始地址 | 数据类型 | 新请求标志 | 轮询周期 | 点号 |
---|---|---|---|---|---|---|
1 | HOLDING | 1 | TwoByteIntUnsigned | FALSE | 2000 | 1001 |
2 | HOLDING | 2 | EightByteFloat | FALSE | 2000 | 1002 |
3 | HOLDING | 6 | TwoByteIntUnsigned | FALSE | 2000 | 1003 |
4 | HOLDING | 7 | TwoByteIntUnsigned | FALSE | 2000 | 1004 |
5 | HOLDING | 8 | TwoByteIntUnsigned | FALSE | 2000 | 1005 |
6 | HOLDING | 9 | TwoByteIntUnsigned | FALSE | 2000 | 1006 |
7 | HOLDING | 10 | TwoByteIntUnsigned | FALSE | 2000 | 1007 |
8 | HOLDING | 11 | TwoByteIntUnsigned | FALSE | 2000 | 1008 |
9 | HOLDING | 12 | TwoByteIntUnsigned | FALSE | 2000 | 1009 |
11 | HOLDING | 13 | TwoByteIntUnsigned | FALSE | 2000 | 1010 |
12 | HOLDING | 17 | EightByteFloat | FALSE | 2000 | 1011 |
... | ... | ... | ... | ... | ... | ... |
1 | 饶中浩, 刘臣臻, 霍宇涛, 等. 面向储能技术的跨学科拔尖创新人才培养教学实践与探索[J]. 储能科学与技术, 2021, 10(3): 1206-1212. |
RAO Z H, LIU C Z, HUO Y T, et al. Practice and exploration of teaching for interdisciplinary outstanding and innovative talents training oriented to energy storage technology[J]. Energy Storage Science and Technology, 2021, 10(3): 1206-1212. | |
2 | 教育部, 国家发展改革委, 国家能源局. 教育部 国家发展改革委 国家能源局关于印发《储能技术专业学科发展行动计划(2020—2024年)》的通知[J]. 中华人民共和国教育部公报, 2020(Z1): 55-58. |
Ministry of Education, National Development and Reform Commission, National Energy Administration. Notice on issuing the action plan for the development of energy storage technology professional discipline (2020-2024) [J]. Bulletin of the Ministry of Education of the People's Republic of China, 2020(Z1): 55-58. | |
3 | 潘春鹏, 郝正航. 基于半实物仿真的风力发电实验教学平台[J]. 贵州大学学报(自然科学版), 2020, 37(3): 53-57. |
PAN C P, HAO Z H. Wind power experiment teaching platform based on hardware-in-the-loop simulation[J]. Journal of Guizhou University (Natural Sciences), 2020, 37(3): 53-57. | |
4 | 江岳文, 江新琴. 含"风-光-氢-燃-储"的混合多能源系统实验平台设计[J]. 实验技术与管理, 2021, 38(5): 20-25. |
JIANG Y W, JIANG X Q. Design on experimental platform of hybrid multi-energy system with "Wind-photovoltaic-hydrogen-fuel cell-battery"[J]. Experimental Technology and Management, 2021, 38(5): 20-25. | |
5 | HAO W J, LIU H, WANG Y, et al. The design and simulation of a teaching virtual platform by combining LabVIEW and Simulink for undergraduates of electrical engineering[C]//2017 20th International Conference on Electrical Machines and Systems (ICEMS). Sydney, Australia, IEEE, 2017: 1-4. |
6 | 张强, 张敬南, 姚绪梁. 光伏发电与储能一体化实验装置[J]. 实验技术与管理, 2021, 38(2): 100-104. |
ZHANG Q, ZHANG J N, YAO X L. Integrated experimental device of photovoltaic power generation and energy storage[J]. Experimental Technology and Management, 2021, 38(2): 100-104. | |
7 | 孟超, 吴涛, 刘平, 等. 光伏和储能并网物理数字混合仿真实验系统方案[J]. 电力系统自动化, 2013, 37(6): 90-95. |
MENG C, WU T, LIU P, et al. A physical digital hybrid simulation experimental scheme for photovoltaic and energy storage grid-connected system[J]. Automation of Electric Power Systems, 2013, 37(6): 90-95. | |
8 | 田春筝, 孙玉树, 唐西胜, 等. 储能提高微网稳定性的仿真实验分析[J]. 电测与仪表, 2018, 55(5): 33-37. |
TIAN C Z, SUN Y S, TANG X S, et al. Simulation experiment of energy storage improving micro-grid stability[J]. Electrical Measurement & Instrumentation, 2018, 55(5): 33-37. | |
9 | 吴肖龙, 夏勇, 胡凌燕, 等. 固体氧化物燃料电池发电系统动态模拟教学实验平台建设[J]. 实验室研究与探索, 2021, 40(8): 154-158. |
WU X L, XIA Y, HU L Y, et al. Construction of dynamic simulation experiment platform for solid oxide fuel cell power generation system[J]. Research and Exploration in Laboratory, 2021, 40(8): 154-158. | |
10 | 刘平, 李树胜, 李光军, 等. 基于磁悬浮储能飞轮阵列的地铁直流电能循环利用系统及实验研究[J]. 储能科学与技术, 2020, 9(3): 910-917. |
LIU P, LI S S, LI G J, et al. Experimental research on DC power recycling system in the subway based on the magnetically suspended energy-storaged flywheel array[J]. Energy Storage Science and Technology, 2020, 9(3): 910-917. | |
11 | 何舜, 张建文, 蔡旭. 风电变流器的RT-LAB硬件在环仿真系统设计与实现[J]. 电力系统保护与控制, 2013, 41(23): 43-48. |
HE S, ZHANG J W, CAI X. Realization and design of wind power converter model based on RT-LAB HIL system[J]. Power System Protection and Control, 2013, 41(23): 43-48. | |
12 | 浙江大学智能电网运行与优化实验室.基于AOE事件驱动技术的低代码工业控制器[EB/OL]. [2021.11.25]. http://sgool.zju.edu.cn/zh-CN/lcc/. |
Zhejiang University Smart Grid Operation and Optimization Laboratory. Low-code industrial controller based on AOE event-driven technology [EB/OL]. [2021.11.25]. http://sgool.zju.edu.cn/zh-CN/lcc/. | |
13 | "新工科"建设行动路线("天大行动")[J]. 高等工程教育研究, 2017(2): 24-25. |
"New Engineering " Construction route("TJU actions") [J]. Research in Higher Education of Engineering, 2017(2): 24-25. | |
14 | 韦磊, 张宏, 杨睿, 等. 基于新工科六问构建研究型大学工科实践教学体系[J]. 高教学刊, 2021, 7(33): 98-101. |
WEI L, ZHANG H, YANG R, et al. Construction of engineering practice teaching system of research universities based on six items of new engineering[J]. Journal of Higher Education, 2021, 7(33): 98-101. | |
15 | 牛天林, 樊波, 张强, 等. "电力电子技术"课程教学中虚实融合式手段实践[J]. 电气电子教学学报, 2018, 40(3): 119-122. |
NIU T L, FAN B, ZHANG Q, et al. Practice of virtuality and reality combination method in power electronic technology teaching[J]. Journal of Electrical & Electronic Education, 2018, 40(3): 119-122. | |
16 | YAO J S, LIN F T. Fuzzy critical path method based on signed distance ranking of fuzzy numbers[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2000, 30(1): 76-82. |
17 | GONZÁLEZ I, CALDERÓN A J, PORTALO J M. Innovative multi-layered architecture for heterogeneous automation and monitoring systems: Application case of a photovoltaic smart microgrid[J]. Sustainability, 2021, 13(4): 2234. |
18 | 李佳娜, 刘丹丹, 朱峰, 等. 基于电力调频的串联锂离子电池组均衡技术分析[J]. 储能科学与技术, 2019, 8(3): 468-476. |
LI J N, LIU D D, ZHU F, et al. Analysis of equalization technology of series lithium-ion battery pack based on power frequency modulation[J]. Energy Storage Science and Technology, 2019, 8(3): 468-476. |
[1] | Xin WU, Wenju SHANG, Zhiyong MA, Wei TENG, Shuang ZHANG, Hairong LUO. Coordinated control method for pumped and flywheel hybrid energy storage system [J]. Energy Storage Science and Technology, 2023, 12(2): 468-476. |
[2] | Jie SONG, Linxiao GENG, Yongfu SANG, Rongbin WEN, Peng SUN, Linjuan GONG. Study on primary frequency modulation capacity planning of thermal power unit assisted by hybrid energy storage based on EMD decomposition [J]. Energy Storage Science and Technology, 2023, 12(2): 496-503. |
[3] | Jun SHENG, Yimin FU, Huigen YU. Structure simulation of large soft pack module for energy storage [J]. Energy Storage Science and Technology, 2023, 12(2): 579-584. |
[4] | Shuili YANG, Xiaokang LAI, Tao DING, Zekai WANG, Jizhong CHEN, Jiahui ZHU, Tingting LI. Application and prospect of new energy storage technologies in resilient power systems [J]. Energy Storage Science and Technology, 2023, 12(2): 515-528. |
[5] | Shigang LUO, Wei ZHANG, Weiwu LI, Yongli BAI. A day-ahead optimized operation of integrated energy system and prosumers with flexible economic regulation of electric/thermal storage [J]. Energy Storage Science and Technology, 2023, 12(2): 486-495. |
[6] | Haidong CHEN, Fei MENG, Qing WANG, Feng HOU, Yi WANG, Zhihua ZHANG. Influence of installed capacity of energy storage system and renewable energy power generation on power system performance [J]. Energy Storage Science and Technology, 2023, 12(2): 477-485. |
[7] | Chao ZHANG, Zuoxia XING, Qitong FU, Libing JIANG, Lei CHEN. Design of thermal and energy storage performance test platform for solid electrothermal energy storage device [J]. Energy Storage Science and Technology, 2023, 12(2): 585-592. |
[8] | Yucheng DAI, Zengpeng WANG, Kaibao LIU, Jiateng ZHAO, Changhui LIU. Research progress of heat storage and heat transfer enhancement based on phase change materials [J]. Energy Storage Science and Technology, 2023, 12(2): 431-458. |
[9] | Meiqian HOU, Qifan NIU, Jie XING, Yinghao SHAN. Optimal configuration of energy storage system in active distribution network with the consideration of reliability [J]. Energy Storage Science and Technology, 2023, 12(2): 504-514. |
[10] | Yang LIU, Weijun TENG, Qingfa GU, Xin SUN, Yuliang TAN, Zhijin FANG, Jianlin LI. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis [J]. Energy Storage Science and Technology, 2023, 12(1): 312-318. |
[11] | Zhihao ZHANG, Xiaogang JIN, Hengxing BAO, Xiang LING. Experimental study of Ca(OH)2/CaO thermochemical energy storage in a mixed heating reactor [J]. Energy Storage Science and Technology, 2023, 12(1): 227-235. |
[12] | Tingting CUI, Yan WANG. Energy storage characteristics of porous inorganic composite phase-change materials based on the Lattice Boltzmann Method [J]. Energy Storage Science and Technology, 2023, 12(1): 61-68. |
[13] | Qianjun MAO, Yuanyuan ZHU. Study on heat storage performance of novel bifurcated fins to strengthen shell-and-tube energy storage tanks [J]. Energy Storage Science and Technology, 2023, 12(1): 69-78. |
[14] | Limu XIAO, Xin GAO, Shihai ZHANG, Xiankui WEN. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(1): 155-164. |
[15] | Juntao CHEN, Yajun WANG, Shunyi SONG, Wenhao QU, Yibing LIU. Simulation of the primary frequency modulation process of wind power with an auxiliary flywheel energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 172-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||