Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1693-1705.doi: 10.19799/j.cnki.2095-4239.2022.0098
Previous Articles Next Articles
ZHANG Yan1(), WANG Hai1,2, LIU Zhaomeng1, ZHANG Deliu1, WANG Jiadong2, LI Jianzhong1, GAO Xuanwen1(
), LUO Wenbin1
Received:
2022-02-24
Revised:
2022-03-19
Online:
2022-06-05
Published:
2022-06-13
Contact:
GAO Xuanwen
E-mail:1971478@stu.neu.edu.cn;gaoxuanwen@mail.neu.edu.cn
CLC Number:
ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705.
Fig. 4
(a) Schematic illustration of the preparation of NCM811@PANI-PVP;(b) HRTEM images of NCM811@PANI-PVP[38]; (c) Schematic illustration of the preparation procedure[39]; (d) Coating-plus-infusion’ microstructure for Co x B-infused NCM; (e) EELS line scan at a secondary-particle surface in cycled pristine NCM and Co x B-NCM[40]"
Fig. 6
(a) Summary of the three main approaches to single-crystal synthesis[50]; (b) TEM image of the S-NCM90 cathode particle charged to 4.3 V at 0.5 C and the c-axis lattice parameters at locations along the dashed yellow line[51]; (c) Schematic illustration of crack evolution and the internal morphological difference for N-NCM and SC-NCM cathodes during prolong cycling; (d) Cycling performances of N-NCM and SC-NCM electrodes in pouch-type full-cells [52]"
1 | 王嗣慧, 徐中领, 杜锐, 等. 高镍三元锂离子电池高温存储性能衰退机理[J]. 储能科学与技术, 2017, 6(4): 770-775. |
WANG S H, XU Z L, DU R, et al. Degradation study of Ni-rich NCM batteries operated at high tempertures[J]. Energy Storage Science and Technology, 2017, 6(4): 770-775. | |
2 | MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (x≤1): A new cathode material for batteries of high energy density[J]. Solid State Ionics, 1981, 3/4: 171-174. |
3 | PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194. |
4 | JUNG S K, GWON H, HONG J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Advanced Energy Materials, 2014, 4(1): doi:10.1002/aenm.201300787. |
5 | DING Y, WANG R, WANG L, et al. A short review on layered LiNi0.8Co0.1Mn0.1O2 positive electrode material for lithium-ion batteries[J]. Energy Procedia, 2017, 105: 2941-2952. |
6 | OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chemistry Letters, 2001(7): 642-643. |
7 | ELLIS B L, LEE K T, NAZAR L F. Positive electrode materials for Li-ion and Li-batteries[J]. Chemistry of Materials, 2010, 22(3): 691-714. |
8 | CHO Y, OH P, CHO J. A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer[J]. Nano Letters, 2013, 13(3): 1145-1152. |
9 | BIE X F, LIU L N, EHRENBERG H, et al. Revisiting the layered LiNi0.4Mn0.4Co0.2O2: A magnetic approach[J]. RSC Advances, 2012, 2(26): 9986. |
10 | ZENG D L, CABANA J, BRÉGER J, et al. Cation ordering in Li[NixMnxCo(1–2 x)]O2-layered cathode materials: A nuclear magnetic resonance (NMR), pair distribution function, X-ray absorption spectroscopy, and electrochemical study[J]. Chemistry of Materials, 2007, 19(25): 6277-6289. |
11 | KONDRAKOV A O, SCHMIDT A, XU J, et al. Anisotropic lattice strain and mechanical degradation of high-and low-nickel NCM cathode materials for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(6): 3286-3294. |
12 | ZHENG J M, KAN W H, MANTHIRAM A. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8- xCo0.1Mn0.1+ xO2 (0.0≤x≤0.08) cathodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6926-6934. |
13 | GONG J Q, WANG Q S, SUN J H. Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries[J]. Thermochimica Acta, 2017, 655: 176-180. |
14 | ZHANG N, LI J, LI H Y, et al. Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials[J]. Chemistry of Materials, 2018, 30(24): 8852-8860. |
15 | YU H J, QIAN Y M, OTANI M, et al. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: Experimental and first-principles calculations[J]. Energy & Environmental Science, 2014, 7(3): 1068. |
16 | RYU H H, PARK K J, YOON C S, et al. Capacity fading of Ni-rich Li[NixCoyMn1- x- y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation?[J]. Chemistry of Materials, 2018, 30(3): 1155-1163. |
17 | PARK J H, CHOI B, KANG Y S, et al. Effect of residual lithium rearrangement on Ni-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Technology, 2018, 6(7): 1361-1369. |
18 | LIU W, OH P, LIU X E, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457. |
19 | WU F, TIAN J, SU Y F, et al. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials[J]. ACS Applied Materials & Interfaces, 2015, 7(14): 7702-7708. |
20 | NAM G W, PARK N Y, PARK K J, et al. Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent[J]. ACS Energy Letters, 2019, 4(12): 2995-3001. |
21 | RYU H H, PARK G T, YOON C S, et al. Microstructural degradation of Ni-rich Li[NixCoyMn1- x- y]O2 cathodes during accelerated calendar aging[J]. Small, 2018, 14(45): doi:10.1002/smll.201803179. |
22 | YAN P F, ZHENG J M, GU M, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries[J]. Nature Communications, 2017, 8: 14101. |
23 | CHEN H, DAWSON J A, HARDING J H. Effects of cationic substitution on structural defects in layered cathode materials LiNiO2[J]. Journal of Materials Chemistry A, 2014, 2(21): 7988. |
24 | DU K, GAO A, GAO L F, et al. Enhancing the structure stability of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via encapsulating in negative thermal expansion nanocrystalline shell[J]. Nano Energy, 2021, 83: doi:10.1016/j.nanoen.2021.105775. |
25 | KIM Y, PARK H, SHIN K, et al. Rational design of coating ions via advantageous surface reconstruction in high-nickel layered oxide cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(38): doi:10.1002/aenm.202101112. |
26 | HATSUKADE T, SCHIELE A, HARTMANN P, et al. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38892-38899. |
27 | MALEKI KHEIMEH SARI H, LI X F. Controllable cathode-electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: A review[J]. Advanced Energy Materials, 2019, 9(39): doi:10.1002/aenm.201901597. |
28 | XU J J, HU Y Y, LIU T, et al. Improvement of cycle stability for high-voltage lithium-ion batteries by in situ growth of SEI film on cathode[J]. Nano Energy, 2014, 5: 67-73. |
29 | 马爱军, 曹征领, 陈永炜, 等. 三元层状正极材料失效机理及改性研究进展[J]. 浙江电力, 2021, 40(1): 106-115. |
MA A J, CAO Z L, CHEN Y W, et al. Degradation mechanisms and modification research progress of Li[Ni1- xMx]O2 layered cathode materials[J]. Zhejiang Electric Power, 2021, 40(1): 106-115. | |
30 | 刘浩文, 乐琦, 吴瑞, 等. Ca掺杂的LiNi1/3Co1/3Mn1/3O2正极材料及其电化学性能研究[J]. 中南民族大学学报(自然科学版), 2018, 37(3): 1-4, 27. |
LIU H W, LE Q, WU R, et al. Ca doping of LiNi1/3Co1/3Mn1/3O2 anode material and its electrochemical performance[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2018, 37(3): 1-4, 27. | |
31 | LI J, ZHANG M L, ZHANG D Y, et al. An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode[J]. Chemical Engineering Journal, 2020, 402: 126195. |
32 | SUSAI F A, KOVACHEVA D, CHAKRABORTY A, et al. Improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: Theoretical and experimental studies[J]. ACS Applied Energy Materials, 2019, 2(6): 4521-4534. |
33 | LIU X L, WANG S, WANG L, et al. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping[J]. Journal of Power Sources, 2019, 438: doi:10.1016/j.jpowsour.2019.227017. |
34 | HE T, LU Y, SU Y F, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries[J]. ChemSusChem, 2018, 11(10): 1639-1648. |
35 | LI J W, LI Y, YI W T, et al. Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(8): 7490-7496. |
36 | LI J Y, LI W D, YOU Y, et al. Extending the service life of high-Ni layered oxides by tuning the electrode-electrolyte interphase[J]. Advanced Energy Materials, 2018, 8(29): doi:10.1002/aenm.201801957. |
37 | BI Y J, LIU M, XIAO B W, et al. Highly stable Ni-rich layered oxide cathode enabled by a thick protective layer with bio-tissue structure[J]. Energy Storage Materials, 2020, 24: 291-296. |
38 | GAN Q M, QIN N, ZHU Y H, et al. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12594-12604. |
39 | LIU Y, TANG L B, WEI H X, et al. Enhancement on structural stability of Ni-rich cathode materials by in situ fabricating dual-modified layer for lithium-ion batteries[J]. Nano Energy, 2019, 65: doi:10.1016/j.nanoen.2019.104043. |
40 | YOON M, DONG Y H, HWANG J, et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries[J]. Nature Energy, 2021, 6(4): 362-371. |
41 | HUANG X, ZHU W C, YAO J Y, et al. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating[J]. Journal of Materials Chemistry A, 2020, 8(34): 17429-17441. |
42 | NEUDECK S, STRAUSS F, GARCIA G, et al. Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material[J]. Chemical Communications, 2019, 55(15): 2174-2177. |
43 | ZHU W C, HUANG X, LIU T T, et al. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges[J]. Coatings, 2019, 9(2): 92. |
44 | BAO W D, QIAN G N, ZHAO L Q, et al. Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi 0.6 Mn0.2Co0.2O2 through optimized surface coating and doping[J]. Nano Letters, 2020, 20(12): 8832-8840. |
45 | XIN F X, ZHOU H, ZONG Y X, et al. What is the role of Nb in nickel-rich layered oxide cathodes for lithium-ion batteries?[J]. ACS Energy Letters, 2021, 6(4): 1377-1382. |
46 | FENG Z, RAJAGOPALAN R, ZHANG S, et al. A three in one strategy to achieve zirconium doping, boron doping, and interfacial coating for stable LiNi0.8Co0.1Mn0.1O2 cathode[J]. Advanced Science, 2021, 8(2): doi:10.1002/advs.202001809. |
47 | SCHIPPER F, BOUZAGLO H, DIXIT M, et al. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries[J]. Advanced Energy Materials, 2018, 8(4): doi:10.1002/aenm.201701682. |
48 | LIU A, ZHANG N, STARK J E, et al. Synthesis of co-free Ni-rich single crystal positive electrode materials for lithium ion batteries (I): Two-step lithiation method for Al-or Mg-doped LiNiO2[J]. Journal of the Electrochemical Society, 2021, 168(4): 040531. |
49 | LIU G L, LI M L, WU N T, et al. Single-crystalline particles: An effective way to ameliorate the intragranular cracking, thermal stability, and capacity fading of the LiNi0.6Co0.2Mn0.2O2 electrodes[J]. Journal of the Electrochemical Society, 2018, 165(13): A3040-A3047. |
50 | LANGDON J, MANTHIRAM A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2021, 37: 143-160. |
51 | RYU H H, NAMKOONG B, KIM J H, et al. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes[J]. ACS Energy Letters, 2021, 6(8): 2726-2734. |
52 | FAN X M, HU G R, ZHANG B, et al. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries[J]. Nano Energy, 2020, 70: doi:10.1016/j.nanoen.2020.104450. |
53 | ZHAO Z Y, HUANG B, WANG M, et al. Facile synthesis of fluorine doped single crystal Ni-rich cathode material for lithium-ion batteries[J]. Solid State Ionics, 2019, 342: doi:10.1016/j.ssi.2019.115065. |
54 | HUANG B, WANG M, ZUO Y X, et al. The effects of reheating process on the electrochemical properties of single crystal LiNi0.6Mn0.2Co0.2O2[J]. Solid State Ionics, 2020, 345: doi:10.1016/j.ssi.2020.115200. |
55 | LI F, KONG L L, SUN Y Y, et al. Micron-sized monocrystalline LiNi1/3Co1/3Mn1/3O2 as high-volumetric-energy-density cathode for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(26): 12344-12352. |
56 | LI H Y, LI J, ZAKER N, et al. Synthesis of single crystal LiNi0.88Co0.09Al0.03O2 with a two-step lithiation method[J]. Journal of the Electrochemical Society, 2019, 166(10): A1956-A1963. |
57 | LIANG R, WU Z Y, YANG W M, et al. A simple one-step molten salt method for synthesis of micron-sized single primary particle LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Ionics, 2020, 26(4): 1635-1643. |
58 | QIAN G N, ZHANG Y T, LI L S, et al. Single-crystal nickel-rich layered-oxide battery cathode materials: Synthesis, electrochemistry, and intra-granular fracture[J]. Energy Storage Materials, 2020, 27: 140-149. |
59 | TREVISANELLO E, RUESS R, CONFORTO G, et al. Polycrystalline and single crystalline NCM cathode materials— quantifying particle cracking, active surface area, and lithium diffusion[J]. Advanced Energy Materials, 2021, 11(18): doi:10.1002/aenm.2020.03400. |
60 | KONG X B, ZHANG Y G, PENG S Y, et al. Superiority of single-crystal to polycrystalline LiNixCoyMn1- x- yO2 cathode materials in storage behaviors for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14938-14948. |
61 | SUN H L, ZHANG Y F, LI W, et al. Effects of Ag coating on the structural and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium ion batteries[J]. Electrochimica Acta, 2019, 327: doi:10.1016/j.electacta.2019.135054. |
62 | MA F, WU Y H, WEI G Y, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO[J]. Journal of Solid State Electrochemistry, 2019, 23(7): 2213-2224. |
63 | LEE S H, PARK G J, SIM S J, et al. Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode via SiO2 coating[J]. Journal of Alloys and Compounds, 2019, 791: 193-199. |
64 | WU K, LI Q, DANG R B, et al. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shell structuring[J]. Nano Research, 2019, 12(10): 2460-2467. |
65 | SU Y F, CHEN G, CHEN L, et al. High-rate structure-gradient Ni-rich cathode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36697-36704. |
66 | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324. |
67 | SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. |
68 | LI W M, TANG W J, QIU M Q, et al. Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Frontiers of Chemical Science and Engineering, 2020, 14(6): 988-996. |
[1] | Xiaohan FENG, Jie SUN, Jianhao HE, Yihua WEI, Chenggang ZHOU, Ruimin SUN. Research progress in LiFePO4 cathode material modification [J]. Energy Storage Science and Technology, 2022, 11(2): 467-486. |
[2] | Can WANG, Pan MA, Guoliang ZHU, Yongchao MA, Pengcheng JI, Shuimiao WEI, Jian ZHAO, Zhishui YU. LIB long life graphite electrode: State-of-art development and perspective [J]. Energy Storage Science and Technology, 2021, 10(1): 59-67. |
[3] | Jixian WANG, Sikan PENG, Wenzheng NAN, Xiang CHEN, Chen WANG, Shaojiu YAN, Shenglong DAI. Preparation of graphene-coated Li1.22Mn0.52Ni0.26O2 using a spray drying method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 111-117. |
[4] | Yueyuan GU, Jucai WEI, Jindong LI, Luyang WANG, Xu WU. Overview and prospect of studies on electrochemical reduction of carbon dioxide electrolyzers [J]. Energy Storage Science and Technology, 2020, 9(6): 1691-1701. |
[5] | Sijia REN, Leiwu TIAN, Qinjun SHAO, Jian CHEN. Synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 by flux method [J]. Energy Storage Science and Technology, 2020, 9(6): 1702-1713. |
[6] | ZHANG Xin, KONG Lingli, GAO Tengyue, LI Haitao, YAO Xiaohui, LI Fuxuan. Analysis and improvement of cycle performance for Ni-rich lithium ion battery [J]. Energy Storage Science and Technology, 2020, 9(3): 813-817. |
[7] | SUN Xingwei, WANG Longlong, JIANG Feng, MA Jun, ZHOU Xinhong, CUI Guanglei. Failure mechanisms and characterization techniques for solid state polymer lithium batteries [J]. Energy Storage Science and Technology, 2019, 8(6): 1024-1032. |
[8] | LIANG Dayu, BAO Tingting, GAO Tianhui, ZHANG Jian. Analysis of cycling performance failure of NMC811/SiO-C pouch cells with high specific energy [J]. Energy Storage Science and Technology, 2018, 7(3): 459-464. |
[9] | WU Minchang1, YU Ningbo1, QIAO Yongmin1, SUN Fangjing2, ZHANG Jie1. The evaluation of fast-charging performance of hard carbon coating artificial graphite for lithium-ion batteries [J]. Energy Storage Science and Technology, 2017, 6(S1): 15-. |
[10] | WANG Sihui, XU Zhongling, DU Rui, MENG Huanping, LIU Yong, LIU Na, LIANG Chengdu. Degradation study of Ni-rich NCM batteries operated at high tempertures [J]. Energy Storage Science and Technology, 2017, 6(4): 770-775. |
[11] | XIE Jia, PENG Wen, YANG Xulai. The cycle life investigation for spinel LiNi0.5Mn1.5O4 full cells [J]. Energy Storage Science and Technology, 2014, 3(6): 624-628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||