Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1706-1714.doi: 10.19799/j.cnki.2095-4239.2021.0556
Previous Articles Next Articles
WANG Can1(), MA Pan1(
), ZHU Guoliang2, WEI Shuimiao1, YANG Zhilu1, ZHANG Zhiyu1
Received:
2021-10-23
Revised:
2021-11-20
Online:
2022-06-05
Published:
2022-06-13
Contact:
MA Pan
E-mail:2074578281@qq.com;mapan@sues.edu.cn
CLC Number:
WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties[J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714.
Table 3
EIS impedance fitting data of nature graphite electrodes coated with different concents of lithium acrylic before and after cycling"
Sample | Cycle number | Re/Ω | RSEI/Ω | Rct/Ω |
---|---|---|---|---|
NG | Before cycling | 3.144 | — | 90.78 |
500th cycle | 5.601 | 24.68 | 63.89 | |
NG@LP3% | Before cycling | 2.388 | — | 135 |
500th cycle | 9.119 | 2.012 | 31.75 | |
NG@LP5% | Before cycling | 2.183 | — | 169.6 |
500th cycle | 5.312 | 2.76 | 11.1 | |
NG@LP10% | Before cycling | 2.321 | — | 180.3 |
500th cycle | 4.395 | 8.491 | 99.67 | |
NG@LP15% | Before cycling | 2.707 | — | 171.6 |
500th cycle | 3.63 | 7.745 | 94.48 |
1 | WAN B Y, TIAN L X, FU M, et al. Green development growth momentum under carbon neutrality scenario[J]. Journal of Cleaner Production, 2021, 316: doi: 10.1016/j.jclepro.2021.128327. |
2 | CHEN T M, JIN Y, LV H Y, et al. Applications of lithium-ion batteries in grid-scale energy storage systems[J]. Transactions of Tianjin University, 2020, 26(3): 208-217. |
3 | ANDERSEN H L, DJUANDHI L, MITTAL U, et al. Strategies for the analysis of graphite electrode function[J]. Advanced Energy Materials, 2021, 11(48): doi: 10.1002/aenm.202102693. |
4 | JAGUEMONT J, BOULON L, DUBÉ Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures[J]. Applied Energy, 2016, 164: 99-114. |
5 | WANG Z J, WANG Y Y, ZHANG Z H, et al. Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes[J]. Advanced Functional Materials, 2020, 30(30): doi: 10.1002/adfm.202002414. |
6 | HENG S, SHAN X J, WANG W, et al. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries[J]. Carbon, 2020, 159: 390-400. |
7 | UI K, FUJII D, NIWATA Y, et al. Analysis of solid electrolyte interface formation reaction and surface deposit of natural graphite negative electrode employing polyacrylic acid as a binder[J]. Journal of Power Sources, 2014, 247: 981-990. |
8 | GONG X H, ZHENG J, ZHENG Y B, et al. Succinimide-modified graphite as anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2020, 356: doi: 10.1016/j.electacta.2020.136858. |
9 | KIM D S, KIM Y E, KIM H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries[J]. Journal of Power Sources, 2019, 422: 18-24. |
10 | FRIESEN A, HILDEBRAND S, HORSTHEMKE F, et al. Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior[J]. Journal of Power Sources, 2017, 363: 70-77. |
11 | TALLMAN K R, YAN S, QUILTY C D, et al. Improved capacity retention of lithium ion batteries under fast charge via metal-coated graphite electrodes[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abcaba. |
12 | LIU Y, ELZATAHRY A A, LUO W, et al. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery[J]. Nano Energy, 2016, 25: 80-90. |
13 | LI F S, WU Y S, CHOU J, et al. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes[J]. Advanced Materials, 2015, 27(1): 130-137. |
14 | PARK S H, KIM H J, LEE J M, et al. Mussel-inspired polydopamine coating for enhanced thermal stability and rate performance of graphite anodes in Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 13973-13981. |
15 | GONG X H, ZHENG Y B, ZHENG J, et al. Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries[J]. ChemElectroChem, 2020, 7(6): 1465-1472. |
16 | LIU C, LIU X G, TAN J, et al. Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode[J]. Journal of Power Sources, 2017, 342: 157-164. |
17 | CHENG Q, YUGE R, NAKAHARA K, et al. KOH etched graphite for fast chargeable lithium-ion batteries[J]. Journal of Power Sources, 2015, 284: 258-263. |
18 | ZHANG L, ZENG M Y, WU D D, et al. Magnetic field regulating the graphite electrode for excellent lithium-ion batteries performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6152-6160. |
19 | SHI Q, LIU W J, QU Q T, et al. Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries[J]. Carbon, 2017, 111: 291-298. |
20 | ZHENG X Y, SHI Q, WANG Y, et al. The role of carbon bond types on the formation of solid electrolyte interphase on graphite surfaces[J]. Carbon, 2019, 148: 105-114. |
21 | HENG S, LV L Z, ZHU Y H, et al. Organic salts with unsaturated bond and diverse anions as substrates for solid electrolyte interphase on graphite anodes[J]. Carbon, 2021, 183: 108-118. |
22 | KIM J, NITHYA JEGHAN S M, LEE G. Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2020, 305: doi: 10.1016/j.micromeso.2020.110325. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[7] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[8] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[9] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[10] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[11] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[12] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[13] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[14] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[15] | Dengfeng JIANG, Yajun CHEN, Yaolong HE, Da BIAN, Hongjiu HU. Role of drying on the mechanical behavior of composite anodes [J]. Energy Storage Science and Technology, 2022, 11(3): 957-963. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||