Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2206-2212.doi: 10.19799/j.cnki.2095-4239.2021.0715
• Energy Storage System and Engineering • Previous Articles Next Articles
Guanghua WU(), Hongsheng LI, Fei LI, Bo CHEN, Shike ZHANG
Received:
2021-12-29
Revised:
2022-03-29
Online:
2022-07-05
Published:
2022-06-29
Contact:
Guanghua WU
E-mail:hbwgh197609@163.com
CLC Number:
Guanghua WU, Hongsheng LI, Fei LI, Bo CHEN, Shike ZHANG. Research on the prediction of carbon emissions in the whole life cycle of electric vehicles considering time correlation[J]. Energy Storage Science and Technology, 2022, 11(7): 2206-2212.
1 | 杨捷, 曹子健. 电动汽车储能V2G模式的成本与收益分析[J]. 储能科学与技术, 2020, 9(S1): 45-51. |
YANG J, CAO Z J. Cost and benefit analysis of EV energy storage through V2G[J]. Energy Storage Science and Technology, 2020, 9(S1): 45-51. | |
2 | 张骞, 武小兰, 白志峰, 等. 电动汽车混合储能系统自适应能量管理策略研究[J]. 储能科学与技术, 2020, 9(3): 878-884. |
ZHANG Q, WU X L, BAI Z F, et al. Research on adaptive energy management strategy of hybrid energy storage system in electric vehicles[J]. Energy Storage Science and Technology, 2020, 9(3): 878-884. | |
3 | 江东, 王娣, 林刚, 等. 特斯拉汽车产业规划布局对中国电能耗和碳排放的影响评估[J]. 科技导报, 2020, 38(16): 140-145. |
JIANG D, WANG D, LIN G, et al. Impact assessment of Tesla's automotive industry planning and layout for China's resource environment[J]. Science & Technology Review, 2020, 38(16): 140-145. | |
4 | 严岿, 陈行. 纯电动汽车和传统汽车使用周期效益比较研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(1): 177-181. |
YAN K, CHEN H. Comparative study on life cycle benefits of pure electric vehicles and traditional vehicles[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(1): 177-181. | |
5 | 蒋浩, 林舜江, 卢艺, 等. 考虑时间相关性的电动汽车充电站负荷概率建模及场景生成[J]. 电力建设, 2020, 41(2): 47-57. |
JIANG H, LIN S J, LU Y, et al. Load probability modeling and scenario generation for electric vehicle charging station considering time correlation[J]. Electric Power Construction, 2020, 41(2): 47-57. | |
6 | 梁晶, 盛慧敏, 吕靖. 环渤海地区物流产业集聚对物流碳排放影响的实证研究[J]. 生态经济, 2020, 36(9): 38-43. |
LIANG J, SHENG H M, LV J. Empirical study on the logistics industry agglomeration to the carbon emission of logistics in the Bohai rim region[J]. Ecological Economy, 2020, 36(9): 38-43. | |
7 | 闫梦, 王聪. 基于多尺度集成模型预测碳交易价格——以广州碳排放交易中心为例[J]. 技术经济与管理研究, 2020(5): 19-24. |
YAN M, WANG C. Prediction of carbon trading price based on multi-scale integrated model—Take Guangzhou carbon emission trading centre as an example[J]. Journal of Technical Economics & Management, 2020(5): 19-24. | |
8 | 平智毅, 吴学兵, 吴雪莲. 长江经济带碳排放效率的时空差异及其影响因素分析[J]. 生态经济, 2020, 36(3): 31-37. |
PING Z Y, WU X B, WU X L. Spatial-temporal differences and its influencing factors of carbon emission efficiency in the Yangtze River economic belt[J]. Ecological Economy, 2020, 36(3): 31-37. | |
9 | 王珂珂, 牛东晓, 甄皓, 等. 基于WOA-ELM模型的中国碳排放预测研究[J]. 生态经济, 2020, 36(8): 20-27. |
WANG K K, NIU D X, ZHEN H, et al. Forecast of carbon emissions in China based on WOA-ELM model[J]. Ecological Economy, 2020, 36(8): 20-27. | |
10 | 王志远, 王守相, 陈海文, 等. 考虑空间相关性采用LSTM神经网络的光伏出力短期预测方法[J]. 电力系统及其自动化学报, 2020, 32(5): 78-85. |
WANG Z Y, WANG S X, CHEN H W, et al. Short-term photovoltaic output forecasting method using LSTM neural network with consideration of spatial correlation[J]. Proceedings of the CSU-EPSA, 2020, 32(5): 78-85. | |
11 | 胡健, 秦玉杰, 焦提操, 等. 泛在电力物联网环境下考虑碳排放权约束的VPP理性调峰模型[J]. 电力系统保护与控制, 2020, 48(3): 49-57. |
HU J, QIN Y J, JIAO T C, et al. Rational peak shaving model of VPP considering carbon emission rights constraints in ubiquitous power Internet of Things environment[J]. Power System Protection and Control, 2020, 48(3): 49-57. | |
12 | 王勇, 许子易, 张亚新. 中国超大城市碳排放达峰的影响因素及组合情景预测——基于门限-STIRPAT模型的研究[J]. 环境科学学报, 2019, 39(12): 4284-4292. |
WANG Y, XU Z Y, ZHANG Y X. Influencing factors and combined scenario prediction of carbon emission peaks in megacities in China: Based on threshold-STIRPAT model[J]. Acta Scientiae Circumstantiae, 2019, 39(12): 4284-4292. | |
13 | 慈铁军, 马皓璨, 杜恒, 等. 电煤供应链碳排放分析与预测[J]. 电力科学与工程, 2021, 37(9): 62-70. |
CI T J, MA H C, DU H, et al. Analysis and forecast of carbon emission in power-coal supply chain[J]. Electric Power Science and Engineering, 2021, 37(9): 62-70. | |
14 | 钟少芬, 郭晓娟, 刘煜平, 等. 基于STRPAT模型的碳排放情景分析[J]. 科技管理研究, 2019, 39(17): 253-258. |
ZHONG S F, GUO X J, LIU Y P, et al. Scenario analysis on carbon emission based on the STIRPAT model[J]. Science and Technology Management Research, 2019, 39(17): 253-258. | |
15 | 宋杰, 陈振宇, 杨阳, 等. 考虑资源相关性和不确定性的负荷需求响应决策研究[J]. 电力建设, 2019, 40(6): 132-138. |
SONG J, CHEN Z Y, YANG Y, et al. Research on load demand response decision considering resource correlation and uncertainty[J]. Electric Power Construction, 2019, 40(6): 132-138. | |
16 | 朱瑞金, 郭威麟, 龚雪娇. 考虑天然气和电负荷之间相关性的短期电负荷预测[J]. 电力系统及其自动化学报, 2019, 31(8): 27-32. |
ZHU R J, GUO W L, GONG X J. Short-term power load forecasting considering correlations between natural gas and power load[J]. Proceedings of the CSU-EPSA, 2019, 31(8): 27-32. | |
17 | 徐龙, 王力, 刘莹, 等. 基于多源数据的公交车能耗碳排放测算模型[J]. 交通运输系统工程与信息, 2020, 20(3): 174-181. |
XU L, WANG L, LIU Y, et al. Calculation model of bus energy consumption and CO2 emission based on multi-source data[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 174-181. | |
18 | 刘朝晖, 张为民, 金希, 等. 制造过程中的广义碳排放计量方法研究[J]. 机械科学与技术, 2019, 38(4): 544-550. |
LIU Z H, ZHANG W M, JIN X, et al. Accounting method of extended carbon emissions in manufacturing process[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4): 544-550. | |
19 | 郝旭, 王贺武, 李伟峰, 等. 基于中国电网结构及一线典型城市车辆出行特征的PHEV二氧化碳排放分析[J]. 环境科学, 2019, 40(4): 1705-1714. |
HAO X, WANG H W, LI W F, et al. Analysis of PHEV CO2 emission based on China's grid structure and travelling patterns in mega cities[J]. Environmental Science, 2019, 40(4): 1705-1714. | |
20 | 王幼松, 黄旭辉, 闫辉. 地铁盾构区间物化阶段碳排放计量分析[J]. 土木工程与管理学报, 2019, 36(3): 12-18, 47. |
WANG Y S, HUANG X H, YAN H. Quantitative analysis of embodied carbon emission in metro shield tunnel[J]. Journal of Civil Engineering and Management, 2019, 36(3): 12-18, 47. |
[1] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[2] | Yan ZHANG, Wei HAN, Chuang SONG, Shuangyi YANG. Joint planning and operation optimization of photovoltaic-storage- charging integrated station containing electric vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1502-1511. |
[3] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[4] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[5] | Xiaogang WU, Zhihao CUI, Yizhao SUN, Kun ZHANG, Jiuyu DU. Charging strategy and thermal management technology of power battery in high power charging process of electric vehicle [J]. Energy Storage Science and Technology, 2021, 10(6): 2218-2234. |
[6] | LU Ting, YANG Wenqiang. Review of evaluation parameters and methods of lithium batteries throughout its life cycle [J]. Energy Storage Science and Technology, 2020, 9(3): 657-669. |
[7] | LI Na, BAI Kai, LIU Yu, WANG Kairang, GONG Yu, DONG Jianming. The energy storage system output control strategy to improve the short term wind power forecasting accuracy rate [J]. Energy Storage Science and Technology, 2018, 7(1): 100-. |
[8] | ZHU Zhangtao1, CHEN Haojie2, DAI Junjie1, LI Weibin1, LI Xue2 . Probabilistic load flow calculation of distribution network with wind power and electric vehicles based on space transform#br# [J]. Energy Storage Science and Technology, 2017, 6(1): 127-134. |
[9] | LI Hong. Project “High energy density lithium batteries for long range EV” [J]. Energy Storage Science and Technology, 2016, 5(6): 915-918. |
[10] | CHEN Yongchong, WANG Qiuping. V2G or VEG?An investigation into the business model for future electric vehicles based on technological developments [J]. Energy Storage Science and Technology, 2013, 2(3): 307-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||