Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (8): 2600-2611.doi: 10.19799/j.cnki.2095-4239.2022.0225
Previous Articles Next Articles
Yong MA1(), Xiaohan LI1, Lei SUN1, Dongliang GUO1, Jinggang YANG1, Jianjun LIU1, Peng XIAO1, Guangjun QIAN2()
Received:
2022-04-25
Revised:
2022-05-14
Online:
2022-08-05
Published:
2022-08-03
Contact:
Guangjun QIAN
E-mail:ma.y@foxmail.com;qguangjun@163.com
CLC Number:
Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model[J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611.
Table 1
Electrochemical thermal coupling model parameters"
参数 | 参数意义 | 单位 | 负极 | 隔膜 | 正极 |
---|---|---|---|---|---|
L | 极片厚度 | 100① | 15① | 51① | |
Lcc | 集流体厚度 | 15.3① | — | 9① | |
i1C | 1 C倍率下平均电流密度 | A/m2 | 26.67① | ||
cs,max | 固相颗粒最大嵌锂浓度 | mol/m3 | 25255② | — | 110995② |
x0/100 | 负极初始时刻化学计量比 | 1 | 0.0073/0.9501② | ||
y0/100 | 正极初始时刻化学计量比 | 1 | 0.9329/0.2904② | ||
Atotal | 活性物质总反应面积 | m2 | 5.49① | ||
rs | 固相颗粒半径 | 12③ | — | 10③ | |
κe | 液相离子电导率 | S/m | |||
σs | 固相电导率 | S/m | 100④ | — | 10④ |
εe | 液相体积分数 | 1 | 0.357③ | 0.4③ | 0.444③ |
σseff | 固相有效电导率 | S/m | εs1.5σs | — | εs1.5σs |
cl0 | 电解质初始盐浓度 | mol/m3 | 1000③ | ||
Ea | 活化能 | J/mol | 21350⑤ | — | 20500⑤ |
kref | 参考温度下的反应速率常数 | m/s | 3e-11④,⑤ | — | 4e-11④,⑤ |
De | 液相扩散系数 | m2/s | |||
Ds,ref | 参考温度下的固相扩散系数 | m2/s | 3.9e-14④,⑤ | — | 4.5e-13④,⑤ |
Tref | 参考温度 | K | 298.15 | ||
αa、αc | 传递系数 | 1 | 0.5 | — | 0.5 |
Cp | 比热容 | J/(kg·K) | 1150① | ||
h | 对流换热系数 | W/(m2·K) | 22① | ||
F | 法拉第常数 | C/mol | 96485 | ||
R | 理想气体常数 | J/(mol·K) | 8.314 |
Table 3
Parameters related to the kinetic reactions of analytical and reversible lithium re-embedding"
参数 | 物理意义 | 单位 | 负极 |
---|---|---|---|
αa, pl、αc, pl | 析锂/锂溶解传递系数 | 1 | 0.3、0.7[ |
kpl/st | 锂析出/溶解反应速率常数 | m/s | 6.5×10-6 |
Ea, pl/st | 析锂与锂溶解反应活化能 | J/mol | 50000 |
z1、z2、z3 | 可逆锂/不可逆锂/SEI占比 | 1 | 0.57、0.375、0.05 |
σSEI | SEI膜电导率 | S/m | 5×10-6[ |
δSEI | SEI膜t厚度 | m | 式(10) |
ρSEI | SEI 膜密度 | kg/m3 | 1690[ |
ρLi | 锂金属密度 | kg/m3 | 534[ |
MSEI | SEI膜摩尔质量 | kg/mol | 0.162[ |
MLi | 锂金属摩尔质量 | kg/mol | 6.94×10-3[ |
1 | INUI Y, KOBAYASHI Y, WATANABE Y, et al. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries[J]. Energy Conversion and Management, 2007, 48(7): 2103-2109. |
2 | GRANDJEAN T, BARAI A, HOSSEINZADEH E, et al. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management[J]. Journal of Power Sources, 2017, 359: 215-225. |
3 | SHARMA G, SOOD V K, ALAM M S, et al. Comparison of common DC and AC bus architectures for EV fast charging stations and impact on power quality[J]. eTransportation, 2020, 5: doi: 10.1016/j.etran.2020.100066. |
4 | HALES A, PROSSER R, BRAVO DIAZ L, et al. The cell cooling coefficient as a design tool to optimise thermal management of lithium-ion cells in battery packs[J]. eTransportation, 2020, 6: doi: 10.1016/j.etran.2020.100089. |
5 | FLECKENSTEIN M, BOHLEN O, ROSCHER M A, et al. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients[J]. Journal of Power Sources, 2011, 196(10): 4769-4778. |
6 | GUO C L, ZHU K J, CHEN C C, et al. Characteristics and effect laws of the large-scale electric Vehicle's charging load[J]. eTransportation, 2020, 3: doi: 10.1016/j.etran.2020.100049. |
7 | 孙占宇. 基于电化学模型的车用锂离子电池安全快速充电算法[J]. 汽车安全与节能学报, 2017, 8(1): 97-101. |
SUN Z Y. Safe fast charging algorithm of lithium ion battery based on an electrochemical model[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 97-101. | |
8 | DIXON J, BELL K. Electric vehicles: Battery capacity, charger power, access to charging and the impacts on distribution networks[J]. eTransportation, 2020, 4: doi: 10.1016/j.etran.2020.100059. |
9 | 彭敏, 申文静, 罗兆东. 层叠式锂离子电池二维热模型研究[J]. 电源技术, 2018, 42(9): 1312-1315. |
PENG M, SHEN W J, LUO Z D. Two-dimensional thermal modeling for laminated lithium ion battery[J]. Chinese Journal of Power Sources, 2018, 42(9): 1312-1315. | |
10 | STURM J, RHEINFELD A, ZILBERMAN I, et al. Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging[J]. Journal of Power Sources, 2019, 412: 204-223. |
11 | ZHAO W, LUO G, WANG C Y. Effect of tab design on large-format Li-ion cell performance[J]. Journal of Power Sources, 2014, 257: 70-79. |
12 | SAMBA A, OMAR N, GUALOUS H, et al. Impact of tab location on large format lithium-ion pouch cell based on fully coupled tree-dimensional electrochemical-thermal modeling[J]. Electrochimica Acta, 2014, 147: 319-329. |
13 | FEAR C, PARMANANDA M, KABRA V, et al. Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating[J]. Energy Storage Materials, 2021, 35: 500-511. |
14 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
15 | DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903. |
16 | TANG S Q, WANG Z X, GUO H J, et al. Systematic parameter acquisition method for electrochemical model of 4.35 V LiCoO2 batteries[J]. Solid State Ionics, 2019, 343: doi: 10.1016/j.ssi.2019.115083. |
17 | YE Y H, SHI Y X, CAI N S, et al. Electro-thermal modeling and experimental validation for lithium ion battery[J]. Journal of Power Sources, 2012, 199: 227-238. |
18 | 李斌, 常国峰, 林春景, 等. 车用动力锂电池产热机理研究现状[J]. 电源技术, 2014, 38(2): 378-381. |
LI B, CHANG G F, LIN C J, et al. Research on heat generate mechanism of Li-ion batteries for electric vehicles[J]. Chinese Journal of Power Sources, 2014, 38(2): 378-381. | |
19 | REN D S, SMITH K, GUO D X, et al. Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model[J]. Journal of the Electrochemical Society, 2018, 165(10): doi: 10.1149/2.0661810jes. |
[1] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[2] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[3] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[4] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[5] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[6] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[7] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[8] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[9] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[10] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[11] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[12] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[13] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[14] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[15] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||