Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1854-1864.doi: 10.19799/j.cnki.2095-4239.2022.0201
Previous Articles Next Articles
ZHOU Wei1,2(), FU Dongju2(), LIU Weifeng3(), CHEN Jianjun2(), HU Zhao1,2, ZENG Xierong1
Received:
2022-04-13
Revised:
2022-04-22
Online:
2022-06-05
Published:
2022-06-13
Contact:
FU Dongju, LIU Weifeng, CHEN Jianjun
E-mail:zw2509278095@163.com;youyou.orange23@163.com;lwf061586@yeah.net;chenjj08@126.com
CLC Number:
ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864.
1 | 张长令. 推动新能源汽车大规模应用与发展,助力中国实现碳中和[J]. 可持续发展经济导刊, 2021(S2): 28-30. |
ZHANG C L. Promote the large-scale application and development of new energy vehicles and help China achieve carbon neutrality[J]. China Sustainability Tribune, 2021(S2): 28-30. | |
2 | BRACO E, SAN MARTÍN I, BERRUETA A, et al. Experimental assessment of cycling ageing of lithium-ion second-life batteries from electric vehicles[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101695. |
3 | LIU Z W, LIU X L, HAO H, et al. Research on the critical issues for power battery reusing of new energy vehicles in China[J]. Energies, 2020, 13(8): 1932. |
4 | SHAHJALAL M, ROY P K, SHAMS T, et al. A review on second-life of Li-ion batteries: Prospects, challenges, and issues[J]. Energy, 2022, 241: doi: 10.1016/j.energy.2021.122881. |
5 | 陈永珍, 黎华玲, 宋文吉, 等. 废旧磷酸铁锂电池回收技术研究进展[J]. 储能科学与技术, 2019, 8(2): 237-247. |
CHEN Y Z, LI H L, SONG W J, et al. A review on recycling technology of spent lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2019, 8(2): 237-247. | |
6 | 卫寿平, 孙杰, 周添, 等. 废旧锂离子电池中金属材料回收技术研究进展[J]. 储能科学与技术, 2017, 6(6): 1196-1207. |
WEI S P, SUN J, ZHOU T, et al. Research development of metals recovery from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(6): 1196-1207. | |
7 | ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302. |
8 | YU W H, GUO Y, SHANG Z, et al. A review on comprehensive recycling of spent power lithium-ion battery in China[J]. eTransportation, 2022, 11: doi: 10.1016/j.etran.2022.100155. |
9 | SHIN S M, KIM N H, SOHN J S, et al. Development of a metal recovery process from Li-ion battery wastes[J]. Hydrometallurgy, 2005, 79(3/4): 172-181. |
10 | 陈建军, 叶利强, 田勇, 等. 新能源汽车废旧锂电池绿色回收精准分离关键技术获得重大突破[J]. 中国科技成果, 2021, 22(5): 53, 66. |
CHEN J J, YE L Q, TIAN Y, et al. A major breakthrough in the key technology of green recycling and precise separation of waste lithium batteries for new energy vehicles[J]. China Science and Technology Achievements, 2021, 22(5): 53, 66. | |
11 | NATARAJAN S, BORICHA A B, BAJAJ H C. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries[J]. Waste Management, 2018, 77: 455-465. |
12 | HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528. |
13 | CHEN X P, LI S Z, WANG Y, et al. Recycling of LiFePO4 cathode materials from spent lithium-ion batteries through ultrasound-assisted fenton reaction and lithium compensation[J]. Waste Management, 2021, 136: 67-75. |
14 | FAN M C, ZHAO Y, KANG Y Q, et al. Room-temperature extraction of individual elements from charged spent LiFePO4 batteries[J]. Rare Metals, 2022, 41(5): 1595-1604. |
15 | LIU P W, FEI Z T, ZHANG Y J, et al. Efficient oxidation approach for selective recovery of lithium from cathode materials of spent LiFePO4 batteries[J]. JOM, 2022, 74(5): 1934-1944. |
16 | JIN H, ZHANG J L, WANG D D, et al. Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature[J]. Green Chemistry, 2022, 24(1): 152-162. |
17 | KUMAR J, SHEN X, LI B, et al. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4[J]. Waste Management, 2020, 113: 32-40. |
18 | WANG X, WANG X Y, ZHANG R, et al. Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source[J]. Waste Management, 2018, 78: 208-216. |
19 | YANG C, ZHANG J L, JING Q K, et al. Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(9): 1478-1487. |
20 | LI H, XING S Z, LIU Y, et al. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017-8024. |
21 | BIAN D C, SUN Y H, LI S, et al. A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers[J]. Electrochimica Acta, 2016, 190: 134-140. |
22 | LAN J, HOU H Y, HUANG B X, et al. The positive role of vitamin C in spindle-like LiFePO4/C cathode derived from two wastes[J]. Ionics, 2022, 28(4): 1583-1593. |
23 | 王子璇, 李俊成, 李金东, 等. 废磷酸铁锂正极材料资源化回收工艺[J]. 储能科学与技术, 2022, 11(1): 45-52. |
WANG Z X, LI J C, LI J D, et al. Resource recovery technology of spent lithium iron phosphate cathode material[J]. Energy Storage Science and Technology, 2022, 11(1): 45-52. | |
24 | QIU X J, ZHANG B C, XU Y L, et al. Enabling the sustainable recycling of LiFePO4 from spent lithium-ion batteries[J]. Green Chemistry, 2022, 24(6): 2506-2515. |
25 | ZHANG J L, HU J T, LIU Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631. |
26 | CAI G Q, FUNG K Y, NG K M, et al. Process development for the recycle of spent lithium ion batteries by chemical precipitation[J]. Industrial & Engineering Chemistry Research, 2014, 53(47): 18245-18259. |
27 | ZHENG R J, ZHAO L, WANG W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. |
28 | SHIN E J, KIM S, NOH J K, et al. A green recycling process designed for LiFePO4 cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(21): 11493-11502. |
29 | GOLMOHAMMADZADEH R, RASHCHI F, VAHIDI E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects[J]. Waste Management, 2017, 64: 244-254. |
30 | GAO W F, ZHANG X H, ZHENG X H, et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: A closed-loop process[J]. Environmental Science & Technology, 2017, 51(3): 1662-1669. |
31 | SANTHIYA D, TING Y P. Bioleaching of spent refinery processing catalyst using aspergillus niger with high-yield oxalic acid[J]. Journal of Biotechnology, 2005, 116(2): 171-184. |
32 | XIN Y Y, GUO X M, CHEN S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116: 249-258. |
33 | LI X L, ZHANG J, SONG D W, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345: 78-84. |
34 | SONG X, HU T, LIANG C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC Advances, 2017, 7(8): 4783-4790. |
35 | CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. |
36 | ZHANG H, WANG L H, CHEN Y Z, et al. Regenerated LiFePO4/C for scrapped lithium iron phosphate powder batteries by pre-oxidation and reduction method[J]. Ionics, 2022, 28(5): 2125-2133. |
37 | SONG W, LIU J W, YOU L, et al. Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application[J]. Journal of Power Sources, 2019, 419: 192-202. |
38 | MORADI B, BOTTE G G. Recycling of graphite anodes for the next generation of lithium ion batteries[J]. Journal of Applied Electrochemistry, 2016, 46(2): 123-148. |
39 | HOU H S, QIU X Q, WEI W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): doi:10.1002/aenm.201602898. |
40 | YANG Y, SONG S L, LEI S Y, et al. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery[J]. Waste Management, 2019, 85: 529-537. |
41 | YI C X, YANG Y, ZHANG T, et al. A green and facile approach for regeneration of graphite from spent lithium ion battery[J]. Journal of Cleaner Production, 2020, 277: doi:10.1016/j.jclepro.2020.123585. |
42 | KAYAKOOL F A, GANGAJA B, NAIR S, et al. Li-based all‑carbon dual-ion batteries using graphite recycled from spent Li-ion batteries[J]. Sustainable Materials and Technologies, 2021, 28: e00262. |
43 | CHEN X F, ZHU Y Z, PENG W C, et al. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: A green and high yield route to high-quality graphene preparation[J]. Journal of Materials Chemistry A, 2017, 5(12): 5880-5885. |
44 | ZHANG W X, LIU Z P, XIA J, et al. Preparing graphene from anode graphite of spent lithium-ion batteries[J]. Frontiers of Environmental Science & Engineering, 2017, 11(5): 1-8. |
45 | ZHANG Y, GUO X M, WU F, et al. Mesocarbon microbead carbon-supported magnesium hydroxide nanoparticles: Turning spent Li-ion battery anode into a highly efficient phosphate adsorbent for wastewater treatment[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21315-21325. |
46 | MU D Y, LIU Y L, LI R H, et al. Transcritical CO2 extraction of electrolytes for lithium-ion batteries: Optimization of the recycling process and quality-quantity variation[J]. New Journal of Chemistry, 2017, 41(15): 7177-7185. |
47 | LIU Y L, MU D Y, LI R H, et al. Purification and characterization of reclaimed electrolytes from spent lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(8): 4181-4187. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[4] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[5] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[6] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[7] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[8] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[9] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[10] | Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021) [J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427. |
[11] | Feng TIAN, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2021 to Jul. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(5): 1854-1868. |
[12] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2021 to May 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(4): 1237-1252. |
[13] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[14] | Yongli HENG, Zhenyi GU, Jinzhi GUO, Xinglong WU. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. |
[15] | Xiaoyu SHEN, Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Feb. 1, 2021 to Mar. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(3): 958-973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||