Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3957-3964.doi: 10.19799/j.cnki.2095-4239.2022.0342
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Dongdong ZHANG(), Hua WEN(), Hongwei OUYANG
Received:
2022-06-21
Revised:
2022-07-12
Online:
2022-12-05
Published:
2022-12-29
Contact:
Hua WEN
E-mail:1778353857@qq.com;wenhua25@ncu.edu.cn
CLC Number:
Dongdong ZHANG, Hua WEN, Hongwei OUYANG. Research on low-temperature pulse heating of a battery based on an electrochemical-thermal coupled model[J]. Energy Storage Science and Technology, 2022, 11(12): 3957-3964.
Table 2
Electrochemical model parameters"
描述 | 参数 | 阴极 | 隔膜 | 阳极 |
---|---|---|---|---|
颗粒半径 | rp/μm | 8.5 | — | 12.5 |
电极体积分数 | ε1 | 0.435 | — | 0.56 |
电解液体积分数 | ε2 | 0.28 | 0.4 | 0.3 |
厚度 | L/μm | 99 | 32 | 72 |
最大固相锂离子浓度 | c1,max/(mol/m3) | 36100 | — | 30100 |
初始电解液锂离子浓度 | c2,0/(mol/m3) | 1200 | 1200 | 1200 |
阳极/阴极电荷交换系数 | αa/αc | 0.5 | — | 0.5 |
电极参考速率常数 | k0, ref /[m2.5/(mol0.5·s)] | 4.38×10-11 | — | 1.63×10-11 |
固相电导率 | σ1/(S/m) | 3.8 | — | 100 |
电极参考电导率 | D1,ref/(m2/s) | 1×10-13 | — | 3.9×10-14 |
电极扩散系数 | D1/(m2/s) | — | ||
传递系数 | t+ | — | 0.363 | — |
扩散活化能 | EaD/(J/mol) | 20000 | — | 35000 |
反应活化能 | EaR/(J/mol) | 4000 | — | 4000 |
液相锂离子扩散系数 | D2/(m2/s) | — | ||
参考温度 | Tref/K | 298.15 | ||
通用气体常数 | R | 8.314 | ||
法拉第常数 | F/(C/mol) | 96487 |
1 | 刘杭鑫, 陈现涛, 孙强, 等. 软包锂离子电池真空环境下循环性能特性[J]. 储能科学与技术, 2022, 11(6): 1806-1815. |
LIU H X, CHEN X T, SUN Q, et al. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment[J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. | |
2 | 王苏杭, 李建林, 李雅欣, 等. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
WANG S H, LI J L, LI Y X, et al. Research on charging strategy of lithium-ion battery system at low temperature[J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. | |
3 | 王军, 阮琳, 邱彦靓. 锂离子电池低温快速加热方法研究进展[J]. 储能科学与技术, 2022, 11(5): 1563-1574. |
WANG J, RUAN L, QIU Y L. Research progress on rapid heating methods for lithium-ion battery in low-temperature[J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. | |
4 | 雷治国, 张承宁, 雷学国, 等. 电传动车辆用锂离子电池组低温加热方法研究[J]. 电源学报, 2016, 14(1): 102-108. |
LEI Z G, ZHANG C N, LEI X G, et al. Study on heating method of lithium-ion battery used in electric vehicle[J]. Journal of Power Supply, 2016, 14(1): 102-108. | |
5 | HU X S, ZHENG Y S, HOWEY D A, et al. Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives[J]. Progress in Energy and Combustion Science, 2020, 77: doi: 10.1016/j.pecs.2019.100806. |
6 | FAN R J, ZHANG C Z, WANG Y, et al. Numerical study on the effects of battery heating in cold climate[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100969. |
7 | WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. |
8 | JI Y, WANG C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta, 2013, 107: 664-674. |
9 | YANG H, FEY E O, TRIMM B D, et al. Effects of Pulse Plating on lithium electrodeposition, morphology and cycling efficiency[J]. Journal of Power Sources, 2014, 272: 900-908. |
10 | ZUÑIGA M, JAGUEMONT J, BOULON L, et al. Heating lithium-ion batteries with bidirectional current pulses[C]//2015 IEEE Vehicle Power and Propulsion Conference. Montreal, QC, Canada. IEEE, 2015: 1-6. |
11 | 徐智慧, 阮海军, 姜久春, 等. 温度自适应的锂离子电池低温自加热方法[J]. 电源技术, 2019, 43(12): 1989-1992, 2043. |
XU Z H, RUAN H J, JIANG J C, et al. Temperature-adaptive internal heating strategy for lithium ion battery at low temperature[J]. Chinese Journal of Power Sources, 2019, 43(12): 1989-1992, 2043. | |
12 | QIN Y D, DU J Y, LU L G, et al. A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life[J]. Applied Energy, 2020, 280: doi: 10.1016/j.apenergy.2020.115957. |
13 | DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903. |
14 | DOYLE M, NEWMAN J. Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process[J]. Journal of Applied Electrochemistry, 1997, 27: 846-856. |
15 | 黄伟, 文华, 李亚胜. 三元软包锂离子动力电池热特性测量及应用[J]. 储能科学与技术, 2019, 8(2): 284-291. |
HUANG W, WEN H, LI Y S. Measurements and application of thermal characteristics of soft-packed NCM lithium-ion power battery[J]. Energy Storage Science and Technology, 2019, 8(2): 284-291. | |
16 | WU S J, XIONG R, LI H L, et al. The state of the art on preheating lithium-ion batteries in cold weather[J]. Journal of Energy Storage, 2020, 27: doi: 10.1016/j.est.2019.101059101059. |
17 | ZHU C, LI X H, SONG L J, et al. Development of a theoretically based thermal model for lithium ion battery pack[J]. Journal of Power Sources, 2013, 223: 155-164. |
[1] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[2] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[3] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[4] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[5] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[6] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[7] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[8] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[9] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[10] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[11] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[12] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[13] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[14] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[15] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||