Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3965-3977.doi: 10.19799/j.cnki.2095-4239.2022.0411
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xueqing WEI1(), Haipeng DENG1, Yu ZHOU1, Bingchuan WANG2()
Received:
2022-07-21
Revised:
2022-08-07
Online:
2022-12-05
Published:
2022-12-29
Contact:
Bingchuan WANG
E-mail:1134425622@qq.com;bingcwang@csu.edu.cn
CLC Number:
Xueqing WEI, Haipeng DENG, Yu ZHOU, Bingchuan WANG. Three-dimensional electrochemical-thermal coupling model of a lithium-ion battery module[J]. Energy Storage Science and Technology, 2022, 11(12): 3965-3977.
Table 2
Static parameters for simulation"
描述 | 参数 | 单位 | 正极集流体 | 正极 | 隔膜 | 负极 | 负极集流体 | 电解液 |
---|---|---|---|---|---|---|---|---|
电解液锂浓度的初始值 | mol/m3 | 1000③ | ||||||
固相锂浓度的初始值 | mol/m3 | 273.67③ | 25598③ | |||||
固体颗粒表面最大锂浓度 | mol/m3 | 22 806② | 31370② | |||||
扩散系数 | m2/s | 4.5×10-11 | ||||||
高度 | m | 0.2① | 0.2① | 0.2① | 0.2① | 0.2① | ||
极耳高度 | m | 0.02② | 0.02② | |||||
厚度 | μm | 19③ | 59③ | 20③ | 46③ | 10③ | ||
活性粒子半径 | μm | 0.2③ | 3.5③ | |||||
初始温度 | K | 297.7② | 297.7② | 297.7② | 297.7② | 297.7② | 297.7② | |
锂离子的迁移数 | 0.38③ | |||||||
宽度 | m | 0.15① | 0.15① | 0.15① | 0.15① | 0.15① | ||
极耳宽度 | m | 0.045① | 0.045① | |||||
液相体积分数 | 0.55③ | 0.5③ | 0.5③ | |||||
固相体积分数 | εs | 0.45③ | 0.5③ | |||||
固相电导率 | S/m | 6.75③ | 2203.8③ | |||||
极耳电导率 | S/m | 3.4486×107① | 5.4645×107① |
1 | 杨红斌. 用于新能源汽车的锂离子动力电池研究进展[J]. 世界科技研究与发展, 2020, 42(1): 79-86. |
YANG H B. Competition situation, technology trends and enlightenment of lithium-ion power batteries in the development of new energy vehicles[J]. World Sci-Tech R & D, 2020, 42(1): 79-86. | |
2 | 华旸, 周思达, 何瑢, 等. 车用锂离子动力电池组均衡管理系统研究进展[J]. 机械工程学报, 2019, 55(20): 73-84. |
HUA Y, ZHOU S D, HE R, et al. Review on lithium-ion battery equilibrium technology applied for EVs[J]. Journal of Mechanical Engineering, 2019, 55(20): 73-84. | |
3 | 徐爱琴, 赵久志, 秦李伟, 等. 一种基于工况循环的磷酸铁锂电池寿命及功率分析[J]. 农业装备与车辆工程, 2017, 55(7): 92-96. |
XU A Q, ZHAO J Z, QIN L W, et al. Research on effect of bus cycle to the performance of battery[J]. Agricultural Equipment & Vehicle Engineering, 2017, 55(7): 92-96. | |
4 | JAVANI N, DINCER I, NATERER G F, et al. Modeling of passive thermal management for electric vehicle battery packs with PCM between cells[J]. Applied Thermal Engineering, 2014, 73(1): 307-316. |
5 | LEE J L, CHEMISTRUCK A, PLETT G L. One-dimensional physics-based reduced-order model of lithium-ion dynamics[J]. Journal of Power Sources, 2012, 220: 430-448. |
6 | TANG Y W, JIA M, LI J, et al. Numerical analysis of distribution and evolution of reaction current density in discharge process of lithium-ion power battery[J]. Journal of the Electrochemical Society, 2014, 161(8): E3021-E3027. |
7 | 张志超, 郑莉莉, 杜光超, 等. 基于多尺度锂离子电池电化学及热行为仿真实验研究[J]. 储能科学与技术, 2020, 9(1): 124-130. |
ZHANG Z C, ZHENG L L, DU G C, et al. Electrochemical and thermal behavior simulation experiments based on multiscale lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 124-130. | |
8 | MASTALI M, FOREMAN E, MODJTAHEDI A, et al. Electrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteries[J]. International Journal of Thermal Sciences, 2018, 129: 218-230. |
9 | CHEN N, ZHANG P, DAI J Y, et al. Estimating the state-of-charge of lithium-ion battery using an H-infinity observer based on electrochemical impedance model[J]. IEEE Access, 2020, 8: 26872-26884. |
10 | GUO M, WHITE R E. A distributed thermal model for a Li-ion electrode plate pair[J]. Journal of Power Sources, 2013, 221: 334-344. |
11 | XU M, ZHANG Z Q, WANG X, et al. A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process[J]. Energy, 2015, 80: 303-317. |
12 | 奚冬. 锂离子电池动态产热模型及电池模组温度不均匀性演化机理研究[D]. 重庆: 重庆大学, 2020. |
XI D. Study on dynamic heat generation model of lithium-ion battery and evolution mechanism of temperature inhomogeneity of battery module[D]. Chongqing: Chongqing University, 2020. | |
13 | LI J, CHENG Y, JIA M, et al. An electrochemical-thermal model based on dynamic responses forlithium iron phosphate battery[J]. Journal of Power Sources, 2014, 255(6):130-143. |
14 | MASTALI M, SAMADANI E, FARHAD S, et al. Three-dimensional multi-particle electrochemical model of LiFePO4 cells based on a resistor network methodology[J]. Electrochimica Acta, 2016, 190: 574-587. |
15 | 史玉军. 车用锂离子电池热分析[D]. 昆明: 昆明理工大学, 2017. |
SHI Y J. Thermal analysis of lithium ion battery for vehicle[D]. Kunming: Kunming University of Science and Technology, 2017. | |
16 | PANCHAL S, DINCER I, AGELIN-CHAAB M, et al. Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery[J]. International Journal of Heat and Mass Transfer, 2017, 109: 1239-1251. |
17 | 李静静, 陈萌. 锂动力电池电化学-热特性建模及仿真研究[J]. 森林工程, 2020, 36(6): 87-94. |
LI J J, CHEN M. Modeling and simulation study of electrochemical and thermal characteristics of lithium power battery[J]. Forest Engineering, 2020, 36(6): 87-94. | |
18 | 梁金华. 纯电动车用磷酸铁锂电池组散热研究[D]. 北京: 清华大学, 2012. |
LIANG J H. Research on the heat dissipation of pure EV's battery pack[D]. Beijing: Tsinghua University, 2012. |
[1] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[2] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[3] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[4] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[5] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[6] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[7] | Lei XU, Xiaopeng LIU, Yongyu WANG. Early warning analysis of the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, 11(8): 2463-2470. |
[8] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[9] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[10] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[11] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[12] | Jiajun ZHU, Hengyun ZHANG, Kangdi XU, Shen XU, Peichao LI. Study of structure optimization and thermal spread suppression based on liquid-cooled battery modules [J]. Energy Storage Science and Technology, 2022, 11(8): 2620-2628. |
[13] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[14] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[15] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||