Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3699-3707.doi: 10.19799/j.cnki.2095-4239.2022.0297
• Technical Economic Analysis of Energy Storage • Previous Articles Next Articles
Jiamin LU(), Junhui XU(
), Weidong WANG, Hao WANG, Zijun XU, Liuping CHEN(
)
Received:
2022-06-01
Revised:
2022-07-12
Online:
2022-11-05
Published:
2022-11-09
Contact:
Junhui XU, Liuping CHEN
E-mail:jmlu@chinasalt-jt.com;jhxu@chinasalt-jt.com;jsb@chinasalt-jt.com
CLC Number:
Jiamin LU, Junhui XU, Weidong WANG, Hao WANG, Zijun XU, Liuping CHEN. Development of large-scale underground hydrogen storage technology[J]. Energy Storage Science and Technology, 2022, 11(11): 3699-3707.
Table 1
Physical properties of hydrogen and methane [8]"
性质 | 氢气 | 甲烷 |
---|---|---|
分子质量 | 2.016 | 16.043 |
密度(25 ℃,101.325 kPa) | 0.082 kg/m3 | 0.657 kg/m3 |
黏度(25 ℃,101.325 kPa) | 0.89×10-5 Pa·s | 1.1×10-5 Pa·s |
水中溶解度(25 ℃,101.325 kPa) | 7.9×10-4 mol/kg | 1.4×10-3 mol/kg |
标准沸点/℃ | -253 | -165 |
临界压力 | 1.3×106 Pa | 4639.67 kPa |
临界温度/℃ | -239.95 | -82.3 |
热值/(kJ/g) | 120~142 | 50.2~55.5 kJ/g |
水中扩散速率(25 ℃) | 5.13×10-9 m2/s | 1.85×10-9 m2/s |
Table 2
The worldwide underground hydrogen storage operating sites"
工程名称(地区) | 存储类型 | 氢气/% | 运行条件 | 深度/m | 体积/m3 | 状态 |
---|---|---|---|---|---|---|
Teesside(英国) | 盐层 | 95 | 45 MPa | 365 | 210000 | 运行 |
Clemens(美国) | 盐丘 | 95 | 7~13.7 MPa | 1000 | 580000 | 运行 |
Moss Bluff(美国) | 盐丘 | — | 5.5~15.2 MPa | 1200 | 566000 | 运行 |
Spindletop(美国) | 盐丘 | 95 | 6.8~20.2 MPa | 1340 | 906000 | 运行 |
Kiel(德国) | 盐穴 | 60 | 8~10 MPa | 32000 | 关闭 | |
Ketzin(德国) | 蓄水层 | 62 | — | 200~250 | — | 与天然气混合 |
Beynes(法国) | 蓄水层 | 50 | — | 430 | 3.3×108 | 与天然气混合 |
Lobodice(捷克) | 蓄水层 | 50 | 9 MPa/34 ℃ | 430 | — | 运行 |
Diadema(阿根廷) | 枯竭气藏 | 10 | 1 MPa/50 ℃ | 600 | — | — |
Underground Sun Storage(澳大利亚) | 枯竭气藏 | 10 | 7.8 MPa/40 ℃ | 1000 | — | 运行 |
Table 3
Distribution of total electricity consumption, renewable resources[33], pipelines and salt mines[34] in Jiangsu province"
江苏地区 | 用电总量 /GWh | 水资源总量 /亿立方米 | 风能产量 /GWh | 长输管道 /条 | 盐矿名称 | 盐矿规模 |
---|---|---|---|---|---|---|
南京市 | 632.9 | 41.5 | 212.2 | 21 | — | |
无锡市 | 759.5 | 37.3 | 94.6 | 20 | — | |
徐州市 | 365.0 | 47.5 | 290.0 | 19 | 丰县师寨盐矿 | 东西10.7 km,南北6 km,其分布范围约64 km2,含储量约220亿吨 |
南通市 | 477.3 | 41.0 | 62893.3 | 20 | — | |
苏州市 | 1523.3 | 58.1 | 7651.4 | 51 | — | |
连云港市 | 194.1 | 40.7 | 8796.0 | 8 | — | |
淮安市 | 193.8 | 48.8 | 1613.1 | 7 | 淮安盐矿 | 保有资源储量121.40 亿吨,储量丰富、品质优良、矿床厚 |
盐城市 | 358.2 | 76.5 | 5503.8 | 13 | — | |
扬州市 | 264.7 | 28.5 | 452.5 | 17 | — | |
镇江市 | 267.1 | 17.8 | 118.5 | 14 | — | |
常州市 | 522.6 | 32.0 | 1805.1 | 26 | 金坛盐矿 | 60.5平方千米内岩盐储量为162.42亿吨 |
泰州市 | 306.9 | 25.6 | 11490.6 | 18 | — | |
宿迁市 | 222.5 | 41.5 | 310.3 | 12 | — | |
市域输气干线 | 241 |
1 | BLANCO H, FAAIJ A. A review at the role of storage in energy systems with a focus on power to gas and long-term storage[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1049-1086. |
2 | SCHULTZ M G, DIEHL T, BRASSEUR G P, et al. Air pollution and climate-forcing impacts of a global hydrogen economy[J]. Science, 2003, 302(5645): 624-627. |
3 | KAUR M, PAL K. Review on hydrogen storage materials and methods from an electrochemical viewpoint[J]. Journal of Energy Storage, 2019, 23: 234-249. |
4 | ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: Review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. |
5 | CAGLAYAN D G, WEBER N, HEINRICHS H U, et al. Technical potential of salt caverns for hydrogen storage in Europe[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6793-6805. |
6 | TAKACH M, SARAJLI\U0107 M, PETERS D, et al. Review of hydrogen production techniques from water using renewable energy sources and its storage in salt caverns[J]. Energies, 2022, 15(4): 1-17. |
7 | MICHALSKI J, BÜNGER U, CROTOGINO F, et al. Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13427-13443. |
8 | ZIVAR D, KUMAR S, FOROOZESH J. Underground hydrogen storage: A comprehensive review[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23436-23462. |
9 | TAYLOR J B, ALDERSON J E A, KALYANAM K M, et al. Technical and economic assessment of methods for the storage of large quantities of hydrogen[J]. International Journal of Hydrogen Energy, 1986, 11(1): 5-22. |
10 | TARKOWSKI R, CZAPOWSKI G. Salt domes in Poland-potential sites for hydrogen storage in caverns[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21414-21427. |
11 | LINDBLOM U E. A conceptual design for compressed hydrogen storage in mined caverns[J]. International Journal of Hydrogen Energy, 1985, 10(10): 667-675. |
12 | WALTERS A. Technical and environmental aspects of underground hydrogen storage: proceedings of the 1st World Hydrogen Energy Conference, 1976[C]// Florida: March, 1976. |
13 | CARDEN P O, PATERSON L. Physical, chemical and energy aspects of underground hydrogen storage[J]. International Journal of Hydrogen Energy, 1979, 4(6): 559-569. |
14 | HEINEMANN N, BOOTH M G, HASZELDINE R S, et al. Hydrogen storage in porous geological formations-onshore play opportunities in the midland valley (Scotland, UK)[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20861-20874. |
15 | LEMIEUX A, SHARP K, SHKARUPIN A. Preliminary assessment of underground hydrogen storage sites in Ontario, Canada[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15193-15204. |
16 | LANKOF L, TARKOWSKI R. Assessment of the potential for underground hydrogen storage in bedded salt formation[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19479-19492. |
17 | NARAYANAMOORTHY S, RAMYA L, BALEANU D, et al. Application of normal wiggly dual hesitant fuzzy sets to site selection for hydrogen underground storage[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28874-28892. |
18 | TARKOWSKI R. Underground hydrogen storage: Characteristics and prospects[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 86-94. |
19 | YUE M L, LAMBERT H, PAHON E, et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111180. |
20 | CONDON J B, SCHOBER T. Hydrogen bubbles in metals[J]. Journal of Nuclear Materials, 1993, 207: 1-24. |
21 | REITENBACH V, GANZER L, ALBRECHT D, et al. Influence of added hydrogen on underground gas storage: A review of key issues[J]. Environmental Earth Sciences, 2015, 73(11): 6927-6937. |
22 | KUTCHKO B G, STRAZISAR B R, HAWTHORNE S B, et al. H2S-CO2 reaction with hydrated class H well cement: Acid-gas injection and CO2 co-sequestration[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 880-888. |
23 | SANTRA A, REDDY B R, LIANG F, et al. Reaction of CO2 with Portland cement at downhole conditions and the role of pozzolanic supplements[C]//April 20-22, 2009. The Woodlands, Texas. SPE, 2009. |
24 | TEODORIU C, REINICKE K M, FICHTER C, et al. Investigations on casing-cement interaction with application to gas and CO2 storage wells[C]//June 14-17, 2010. Barcelona, Spain. SPE, 2010. |
25 | PATEL H, SALEHI S, AHMED R, et al. Review of elastomer seal assemblies in oil & gas wells: Performance evaluation, failure mechanisms, and gaps in industry standards[J]. Journal of Petroleum Science and Engineering, 2019, 179: 1046-1062. |
26 | SALEHI S, EZEAKACHA C P, KWATIA G, et al. Performance verification of elastomer materials in corrosive gas and liquid conditions[J]. Polymer Testing, 2019, 75: 48-63. |
27 | FERNÁNDEZ C, CASTAÑO P. Compatibility behavior of elastomers for PCP applications: Corrosion[C]//March 6-10, 2016. Canada, 2016. |
28 | LASSIN A, DYMITROWSKA M, AZAROUAL M. Hydrogen solubility in pore water of partially saturated argillites: Application to Callovo-Oxfordian clayrock in the context of a nuclear waste geological disposal[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(17/18): 1721-1728. |
29 | RUTQVIST J. The geomechanics of CO2 storage in deep sedimentary formations[J]. Geotechnical and Geological Engineering, 2012, 30(3): 525-551. |
30 | GREGORY S P, BARNETT M J, FIELD L P, et al. Subsurface microbial hydrogen cycling: Natural occurrence and implications for industry[J]. Microorganisms, 2019, 7(2): 53. |
31 | BERTA M, DETHLEFSEN F, EBERT M, et al. Geochemical effects of millimolar hydrogen concentrations in groundwater: An experimental study in the context of subsurface hydrogen storage[J]. Environmental Science & Technology, 2018, 52(8): 4937-4949. |
32 | LIU W, ZHANG Z X, CHEN J, et al. Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu Province[J]. Energy, 2020, 198: doi: 10.1016/j.energy.2020.117348. |
33 | WEI X L, DUAN Y W, LIU Y X, et al. Onshore-offshore wind energy resource evaluation based on synergetic use of multiple satellite data and meteorological stations in Jiangsu Province, China[J]. Frontiers of Earth Science, 2019, 13(1): 132-150. |
34 | LIU W, ZHANG X, FAN J Y, et al. Evaluation of potential for salt cavern gas storage and integration of brine extraction: Cavern utilization, Yangtze River Delta region[J]. Natural Resources Research, 2020, 29(5): 3275-3290. |
[1] | Jin XU, Xian DING, Yongli GONG, Guangli HE, Ting HU. Economic analysis of hydrogen production plant with water electrolysis [J]. Energy Storage Science and Technology, 2022, 11(7): 2374-2385. |
[2] | Wei LIU, Yanming WAN, Yalin XIONG, Jian LIU. Outlook of low carbon and clean hydrogen in China under the goal of "carbon peak and neutrality" [J]. Energy Storage Science and Technology, 2022, 11(2): 635-642. |
[3] | Yanming WAN, Yalin XIONG, Xueying WANG. Strategic analysis of hydrogen energy development in major countries [J]. Energy Storage Science and Technology, 2022, 11(10): 3401-3410. |
[4] | Xiaoyuan WU, Zhelun ZUO, Shiyu GUO, Ru WANG, Jianhui HE. Evaluation on city application readiness of fuel cell logistics vehicles [J]. Energy Storage Science and Technology, 2020, 9(5): 1574-1584. |
[5] | ZHAO Yuejing, HE Guangli, MIAO Ping, XU Zhuang, YANG Kang, TIAN Zhonghui, DONG Wenping, XIONG Yalin. Study on comprehensive evaluation of 35 MPa/70 MPa hydrogen dispenser refueling performance [J]. Energy Storage Science and Technology, 2020, 9(3): 702-706. |
[6] | LI Luling, FAN Shuanshi, CHEN Qiuxiong, YANG Guang, WEN Yonggang. Hydrogen storage technology: Current status and prospects [J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. |
[7] | WANG Shuo1,2, ZHANG Jun3 . Research on patent status and process route of hydrogen production in China [J]. Energy Storage Science and Technology, 2018, 7(2): 353-362. |
[8] | HUO Xianxu, WANG Jing, JIANG Ling, XU Qingshan. Review on key technologies and applications of hydrogen energy storage system [J]. Energy Storage Science and Technology, 2016, 5(2): 197-203. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1076
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 924
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||