Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3808-3818.doi: 10.19799/j.cnki.2095-4239.2022.0363
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xiubo ZHANG1(), Chang YU1(), Jinhe YU1, Yingbin LIU1, Yuanyang XIE1, Jianjian WANG1, Shuqin LAN1, Jieshan QIU2()
Received:
2022-06-29
Revised:
2022-10-18
Online:
2022-12-05
Published:
2022-12-29
Contact:
Chang YU, Jieshan QIU
E-mail:zxb15179064815@163.com;chang.yu@dlut.edu.cn;qiujs@mail.buct.edu.cn
CLC Number:
Xiubo ZHANG, Chang YU, Jinhe YU, Yingbin LIU, Yuanyang XIE, Jianjian WANG, Shuqin LAN, Jieshan QIU. Recent progress of polymer electrolytes for supercapacitors under extreme environments[J]. Energy Storage Science and Technology, 2022, 11(12): 3808-3818.
1 | MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651-652. |
2 | LIM C, HONG Y J, JUNG J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels[J]. Science Advances, 2021, 7(19): doi: 10.1126/sciadv.abd3716. |
3 | MARION J S, GUPTA N, CHEUNG H, et al. Thermally drawn highly conductive fibers with controlled elasticity[J]. Advanced Materials, 2022, 34(19): doi: 10.1002/adma.202201081. |
4 | FEINER R, DVIR T. Tissue-electronics interfaces: From implantable devices to engineered tissues[J]. Nature Reviews Materials, 2018, 3: 17076. |
5 | WANG Y Z, SHAN X Y, MA L P, et al. A desolvated solid-solid interface for a high-capacitance electric double layer[J]. Advanced Energy Materials, 2019, 9(12): doi: 10.1002/aenm. 201803715. |
6 | SON W, CHUN S, LEE J M, et al. Twist-stabilized, coiled carbon nanotube yarns with enhanced capacitance[J]. ACS Nano, 2022, 16(2): 2661-2671. |
7 | YANG J, YU C, FAN X M, et al. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors[J]. Energy & Environmental Science, 2016, 9(4): 1299-1307. |
8 | TENG C L, HAN Y, FU G Y, et al. Isostatic pressure-assisted nanocasting preparation of zeolite templated carbon for high-performance and ultrahigh rate capability supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(39): 18938-18947. |
9 | YANG I, KWON D, KIM M S, et al. A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors[J]. Carbon, 2018, 132: 503-511. |
10 | LONG S S, FENG Y C, HE F L, et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators[J]. Nano Energy, 2021, 85: doi:10.1016/j.nanoen.2021.105973. |
11 | JIANG Q, KURRA N, ALHABEB M, et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors[J]. Advanced Energy Materials, 2018, 8(13): doi:10.1002/aenm.201703043. |
12 | GUO W, YU C, LI S F, et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives[J]. Nano Energy, 2019, 57: 459-472. |
13 | LIU S, KANG L, HU J, et al. Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors [J]. ACS Energy Letters, 2021, 6(9): 3011-3019. |
14 | KAVINKUMAR T, SEENIVASAN S, LEE H H, et al. Interface-modulated uniform outer nanolayer: A category of electrodes of nanolayer-encapsulated core-shell configuration for supercapacitors[J]. Nano Energy, 2021, 81: doi:10.1016/j.nanoen.2020.105667. |
15 | DENG T, LU Y, ZHANG W, et al. Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes[J]. Advanced Energy Materials, 2018, 8(7): doi:10.1002/aenm.201702294. |
16 | LI S F, SHARMA N, YU C, et al. Operando tailoring of defects and strains in corrugated β-Ni(OH)2 nanosheets for stable and high-rate energy storage[J]. Advanced Materials, 2021, 33(2): doi: 10.1002/adma.202006147. |
17 | GUO W, DUN C C, YU C, et al. Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage[J]. Nature Communications, 2022, 13: 1409. |
18 | YANG J, YU C, HU C, et al. Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors[J]. Advanced Functional Materials, 2018, 28(44): doi:10.1002/adfm.201803272. |
19 | LI S F, YU C, YANG J, et al. A superhydrophilic "nanoglue" for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors[J]. Energy & Environmental Science, 2017, 10(9): 1958-1965. |
20 | ZHAO Z Y, XIA K Q, HOU Y, et al. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: From conductive polymers[J]. Chemical Society Reviews, 2021, 50(22): 12702-12743. |
21 | HU S, YI J, ZHANG Y J, et al. Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy[J]. Nature Communications, 2020, 11: 2518. |
22 | FRITTMANN S, HALKA V, SCHUSTER R. Identification of non-faradaic processes by measurement of the electrochemical Peltier heat during the silver underpotential deposition on Au(111)[J]. Angewandte Chemie International Edition, 2016, 55(15): 4688-4691. |
23 | BROUSSE K, PINAUD S, NGUYEN S, et al. Facile and scalable preparation of ruthenium oxide-based flexible micro-supercapacitors[J]. Advanced Energy Materials, 2020, 10(6): doi:10.1002/aenm. 201903136. |
24 | GUO W, YU C, ZHAO C T, et al. Boosting charge storage in 1D manganese oxide-carbon composite by phosphorus-assisted structural modification for supercapacitor applications[J]. Energy Storage Materials, 2020, 31: 172-180. |
25 | LUO J M, SUN T Q, SUN Y G, et al. A general synthesis strategy for hollow metal oxide microspheres enabled by gel-assisted precipitation[J]. Angewandte Chemie International Edition, 2021, 60(39): 21377-21383. |
26 | LUKATSKAYA M R, DUNN B, GOGOTSI Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nature Communications, 2016, 7: 12647. |
27 | FLEISCHMANN S, MITCHELL J B, WANG R C, et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials[J]. Chemical Reviews, 2020, 120(14): 6738-6782. |
28 | WU S L, CHEN Y T, JIAO T P, et al. An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles[J]. Advanced Energy Materials, 2019, 9(47): doi:10.1002/aenm. 201902915. |
29 | GU C, LIU Z, GAO X, et al. Polymerization increasing the capacitive charge storage for better rate performance: A case study of electrodes in aqueous sodium-ion capacitors[J]. Battery Energy, 2022, 1:20220031: doi:10.1002/bte2.20220031. |
30 | AMARAL M M, VENâNCIO R, PETERLEVITZ A C, et al. Recent advances on quasi-solid-state electrolytes for supercapacitors[J]. Journal of Energy Chemistry, 2022, 67: 697-717. |
31 | WANG H, ZHONG Y, NING J, et al. Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors[J]. Chinese Chemical Letters, 2021, 32(12): 3733-3752. |
32 | GUO T Z, ZHOU D, PANG L X, et al. Perspectives on working voltage of aqueous supercapacitors[J]. Small, 2022, 18(16): doi: 10.1002/smll.202106360. |
33 | ZHONG C, DENG Y D, HU W B, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. |
34 | LIU X H, TAIWO O O, YIN C Y, et al. Aligned ionogel electrolytes for high-temperature supercapacitors[J]. Advanced Science, 2019, 6(5): doi: 10.1002/advs.201801337. |
35 | KIM D W, JUNG S M, JUNG H Y. A super-thermostable, flexible supercapacitor for ultralight and high performance devices[J]. Journal of Materials Chemistry A, 2020, 8(2): 532-542. |
36 | RANA H H, PARK J H, DUCROT E, et al. Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices[J]. Energy Storage Materials, 2019, 19: 197-205. |
37 | MO F N, LIANG G J, MENG Q Q, et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at 20 ℃[J]. Energy & Environmental Science, 2019, 12(2): 706-715. |
38 | RONG Q F, LEI W W, HUANG J, et al. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors[J]. Advanced Energy Materials, 2018, 8(31): doi: 10.1002/aenm. 201801967. |
39 | ZHU X Q, JI C C, MENG Q Q, et al. Freeze-tolerant hydrogel electrolyte with high strength for stable operation of flexible zinc-ion hybrid supercapacitors[J]. Small, 2022, 18(16): doi: 10.1002/smll.202200055. |
40 | YU H M, ROUELLE N, QIU A D, et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 37977-37985. |
41 | HUANG Y, ZHONG M, SHI F K, et al. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte[J]. Angewandte Chemie International Edition, 2017, 56(31): 9141-9145. |
42 | LI H L, LV T, SUN H H, et al. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte[J]. Nature Communications, 2019, 10: 536. |
43 | WANG Y K, CHEN F, LIU Z X, et al. A highly elastic and reversibly stretchable all-polymer supercapacitor[J]. Angewandte Chemie International Edition, 2019, 58(44): 15707-15711. |
44 | LI Z Q, LI M, FAN Q, et al. Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14778-14785. |
45 | PAN Q, TONG N J, HE N F, et al. Electrospun mat of poly(vinyl alcohol)/graphene oxide for superior electrolyte performance[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7927-7934. |
46 | ZHENG Z, LI M, ZHOU Q J, et al. Polyoxometalate-poly(ethylene oxide) nanocomposites for flexible anhydrous solid-state proton conductors[J]. ACS Applied Nano Materials, 2021, 4(1): 811-819. |
47 | GUO W, YU C, LI S F, et al. Toward commercial-level mass-loading electrodes for supercapacitors: Opportunities, challenges and perspectives[J]. Energy & Environmental Science, 2021, 14(2): 576-601. |
48 | DOBASHI Y, YAO D, PETEL Y, et al. Piezoionic mechanoreceptors: Force-induced current generation in hydrogels[J]. Science, 2022, 376(6592): 502-507. |
[1] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[2] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[3] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[4] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[5] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[6] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[7] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
[8] | Li WEI, Xuelin HUANG, Wanting ZHANG, Xintong BAI. A temperature monitoring method of supercapacitor module based on a small number of temperature sensors [J]. Energy Storage Science and Technology, 2022, 11(11): 3631-3640. |
[9] | Qiao DENG, Dongyuan QIU, Wenchao GU, Yanfeng CHEN, Bo ZHANG. Parameter-identification method for fractional-order models of supercapacitors based on frequency-band division [J]. Energy Storage Science and Technology, 2022, 11(10): 3371-3380. |
[10] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[11] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[12] | Xiliang WANG, Wenfeng CUI, Kefeng TONG, Xuelong CHEN, Zhijun QIAO, Dianbo RUAN. Design and simulation of an integrated three-port converter for supercapacitor energy storage [J]. Energy Storage Science and Technology, 2021, 10(3): 1095-1102. |
[13] | Kai WANG, Zhaoxia HOU, Siyao LI, Chenying QU, Yue WANG, Youjian KONG. Research progress of stretchable all-solid supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 887-895. |
[14] | Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 945-951. |
[15] | Zhijie BI, Ning ZHAO, Xiangxin GUO. Electrochromic-supercapacitors based on tungsten oxide and prussian blue [J]. Energy Storage Science and Technology, 2021, 10(3): 952-957. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||