Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3987-3998.doi: 10.19799/j.cnki.2095-4239.2022.0396
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Guiquan CHEN(), Yingyin SHA, Weifeng ZHAO(), Yelin DENG()
Received:
2022-07-12
Revised:
2022-08-20
Online:
2022-12-05
Published:
2022-12-29
Contact:
Weifeng ZHAO, Yelin DENG
E-mail:gqchen0916@stu.suda.edu.cn;wfzhao@suda.edu.cn;yelin.deng@suda.edu.cn
CLC Number:
Guiquan CHEN, Yingyin SHA, Weifeng ZHAO, Yelin DENG. Simulation study on the mechanism and process of thermal runaway induced by aging of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(12): 3987-3998.
Table 2
Physical and chemical parameters of coupling model"
参数 | 铝 | 正极 | 隔膜 | 负极 | 铜 | 来源 |
---|---|---|---|---|---|---|
布鲁格曼曲折指数 | — | 2.98 | 2.15 | 2.5 | — | 文献[ |
电解质初始浓度/(mol/m3) | — | — | 1200 | — | — | 文献[ |
最大负极容量/(mol/m3) | — | 49000 | — | 31507 | — | 文献[ |
初始Li+浓度/(mol/m3) | — | 4900 | — | 29932 | — | COMSOL内置材料 |
电解质相体积分数 | — | 0.40 | 0.6 | 0.3 | — | 文献[ |
电极相体积分数 | — | 0.53 | — | 0.7 | — | 文献[ |
厚度/μm | 8 | 85 | 20 | 11 | 8 | 文献[ |
粒子半径/μm | — | 2.50 | — | 2.5 | — | 文献[ |
电导率/(S/m) | 3.77×107 | — | 100 | — | 6.4×107 | 文献[ |
扩散系数/(m2/s) | — | 5×10-13 | — | 1.45×10-13 | — | 文献[ |
密度/(kg/m3) | 2700 | 2328.5 | 492.16 | 1347.33 | 8960 | 文献[ |
比热容cp /[J/(kg·K)] | 900 | 1269.21 | 1978.16 | 1437.4 | 385 | 文献[ |
导热系数/[W/(m·K)] | 238 | 1.58 | 0.344 | 1.04 | 400 | 文献[ |
1 | 杨茜. 2022年我国汽车市场趋势分析[J]. 汽车纵横, 2022(2): 54-56. |
YANG X. Analysis of my country's auto market trends in 2022[J]. Auto Review, 2022(2): 54-56. | |
2 | FRANZÒ S, FRATTINI F, LATILLA V M, et al. The diffusion of electric vehicles in Italy as a means to tackle main environmental issues[C]//2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER). Monte Carlo, Monaco. IEEE, : 1-7. |
3 | WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: Existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212. |
4 | RAMADASS P, FANG W F, ZHANG Z M. Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique[J]. Journal of Power Sources, 2014, 248: 769-776. |
5 | ZHAO W, LUO G, WANG C Y. Modeling nail penetration process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 162(1): A207-A217. |
6 | MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells[J]. Journal of Power Sources, 2009, 191(2): 568-574. |
7 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. |
8 | ZAVALIS T G, BEHM M, LINDBERGH G. Investigation of short-circuit scenarios in a lithium-ion battery cell[J]. Journal of the Electrochemical Society, 2012, 159(6): A848-A859. |
9 | COMAN P T, DARCY E C, VEJE C T, et al. Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and Arrhenius formulations[J]. Journal of the Electrochemical Society, 2017, 164(4): A587-A593. |
10 | WANG S R, LU L L, LIU X J. A simulation on safety of LiFePO4/C cell using electrochemical-thermal coupling model[J]. Journal of Power Sources, 2013, 244: 101-108. |
11 | 陈芬放. 高能量密度NCA正极锂离子电池老化过程产热特性研究[D]. 杭州: 浙江大学, 2021. |
CHEN F F. Study on the heat generation characteristics of high-specific-energy lithium ion batteries with NCA cathode during aging[D]. Hangzhou: Zhejiang University, 2021. | |
12 | JIN X. Aging-Aware optimal charging strategy for lithium-ion batteries: Considering aging status and electro-thermal-aging dynamics[J]. Electrochimica Acta, 2022, 407: doi:10.1016/j.electacta.2021.139651. |
13 | XIONG R, PAN Y, SHEN W X, et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives[J]. Renewable and Sustainable Energy Reviews, 2020, 131: doi:10.1016/j.rser.2020.110048. |
14 | REN D S, HSU H, LI R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: doi: 10.1016/j.etran.2019.100034. |
15 | YUAN W, LIANG D, CHU Y Y, et al. Aging effect delays overcharge-induced thermal runaway of lithium-ion batteries[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: doi: 10.1016/j.jlp.2022.104830. |
16 | ABADA S, PETIT M, LECOCQ A, et al. Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries[J]. Journal of Power Sources, 2018, 399: 264-273. |
17 | YANG M J, YE Y J, YANG A J, et al. Comparative study on aging and thermal runaway of commercial LiFePO4/graphite battery undergoing slight overcharge cycling[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104691. |
18 | LIU J L, WANG Z R, BAI J L, et al. Heat generation and thermal runaway mechanisms induced by overcharging of aged lithium-ion battery[J]. Applied Thermal Engineering, 2022, 212: doi: 10.1016/j.applthermaleng.2022.118565. |
19 | 黄文才. 基于COMSOL的锂离子电池热失控模拟分析和研究[D]. 成都: 西南交通大学, 2019. |
HUANG W C. Simulation and research on thermal runaway of lithium ion battery based on COMSOL[D]. Chengdu: Southwest Jiaotong University, 2019. | |
20 | SAITO Y. Thermal behaviors of lithium-ion batteries during high-rate pulse cycling[J]. Journal of Power Sources, 2005, 146(1/2): 770-774. |
21 | 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法[J]. 物理学报, 2017, 66(23): 312-322. |
PANG H. Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model[J]. Acta Physica Sinica, 2017, 66(23): 312-322. | |
22 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
23 | 陶欢. 锂离子动力电池热失控实验与模拟研究[D]. 武汉: 华中科技大学, 2017. |
TAO H. Experimental and simulation study on thermal runaway of lithium-ion battery[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
24 | 张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J]. 汽车工程, 2015, 37(7): 743-750, 756. |
ZHANG M X, FENG X N, OUYANG M G, et al. Experiments and modeling of nail penetration thermal runaway in a NCM Li-ion power battery[J]. Automotive Engineering, 2015, 37(7): 743-750, 756. | |
25 | 马勇, 李晓涵, 孙磊, 等. 基于三维电化学热耦合析锂模型的锂离子电池参数设计[J]. 储能科学与技术, 2022, 11(8): 2600-2611. |
MA Y, LI X H, SUN L, et al. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model[J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. | |
26 | 王远. 锂离子电池用聚乙烯隔膜改性及其性能研究[D]. 南昌: 南昌大学, 2020. |
WANG Y. Study on the properties of the modified polyethylene membrane for lithium-ion battery[D]. Nanchang: Nanchang University, 2020. |
[1] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[2] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[3] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[4] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[5] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[6] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
[7] | Lei XU, Xiaopeng LIU, Yongyu WANG. Early warning analysis of the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, 11(8): 2463-2470. |
[8] | Shuang SHI, Nawei LYU, Jingxuan MA, Kangyong YIN, Lei SUN, Ning ZHANG, Yang JIN. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment [J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. |
[9] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[10] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[11] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[12] | ping ZHUO, Yanli ZHU, Chuang QI, Congjie WANG, Fei GAO. Combustion and explosion characteristics of lithium-ion battery pack under overcharge [J]. Energy Storage Science and Technology, 2022, 11(8): 2471-2479. |
[13] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[14] | Jianxin LU, Ying ZHANG, Chuyuan MA, Kang DENG, Chunying LEI. Study on fire-extinguishing performance of hydrogel on lithium-iron-phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2637-2644. |
[15] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||