Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 913-922.doi: 10.19799/j.cnki.2095-4239.2022.0637
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Zihao LIU1(), Xuesong ZHANG2, Da LIN2, Liqing SUN1, Zhengyang LI1, Rui XIONG1()
Received:
2022-10-31
Revised:
2022-11-17
Online:
2023-03-05
Published:
2023-04-14
Contact:
Rui XIONG
E-mail:lzh1921039462@163.com;rxiong@bit.edu.cn
CLC Number:
Zihao LIU, Xuesong ZHANG, Da LIN, Liqing SUN, Zhengyang LI, Rui XIONG. Joint energy and power state estimation method for energy storage battery based on extended Kalman filter[J]. Energy Storage Science and Technology, 2023, 12(3): 913-922.
Fig. 7
Estimation results of terminal voltage of energy storage battery(a) comparison between estimated value and measured value at 25 ℃; (b) estimation error of terminal voltage at 25 ℃; (c) comparison between estimated value and measured value at 45 ℃; (d) estimation error of terminal voltage at 45 ℃"
1 | WANG Y J, TIAN J Q, SUN Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews, 2020, 131: doi: 10.1016/j.rser.2020.110015. |
2 | REVANKAR S R, KALKHAMBKAR V N. Grid integration of battery swapping station: A review[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102937. |
3 | HU X S, XIONG R, EGARDT B. Model-based dynamic power assessment of lithium-ion batteries considering different operating conditions[J]. IEEE Transactions on Industrial Informatics, 2014, 10(3): 1948-1959. |
4 | FARMANN A, SAUER D U. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2016, 329: 123-137. |
5 | LAI X, HUANG Y F, HAN X B, et al. A novel method for state of energy estimation of lithium-ion batteries using particle filter and extended Kalman filter[J]. Journal of Energy Storage, 2021, 43: doi: 10.1016/j.est.2021.103269. |
6 | LIN C, MU H, XIONG R, et al. Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: State-of-energy[J]. Applied Energy, 2017, 194: 560-568. |
7 | DONG G Z, CHEN Z H, WEI J W, et al. An online model-based method for state of energy estimation of lithium-ion batteries using dual filters[J]. Journal of Power Sources, 2016, 301: 277-286. |
8 | 刘伟龙, 王丽芳, 王立业. 基于电动汽车工况识别预测的锂离子电池SOE估计[J]. 电工技术学报, 2018, 33(1): 17-25. |
LIU W L, WANG L F, WANG L Y. Estimation of state-of-energy for electric vehicles based on the identification and prediction of driving condition[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 17-25. | |
9 | HE H W, ZHANG Y Z, XIONG R, et al. A novel Gaussian model based battery state estimation approach: State-of-Energy[J]. Applied Energy, 2015, 151: 41-48. |
10 | LIU X T, WU J, ZHANG C B, et al. A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures[J]. Journal of Power Sources, 2014, 270: 151-157. |
11 | WANG Y J, YANG D, ZHANG X, et al. Probability based remaining capacity estimation using data-driven and neural network model[J]. Journal of Power Sources, 2016, 315: 199-208. |
12 | LI W H, FAN Y, RINGBECK F, et al. Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression[J]. Applied Energy, 2022, 306: doi:10.1016/j.apenergy.2021.118114. |
13 | 郭向伟, 邢程, 司阳, 等. RLS锂电池全工况自适应等效电路模型[J]. 电工技术学报, 2022, 37(16): 4029-4037. |
GUO X W, XING C, SI Y, et al. RLS adaptive equivalent circuit model of lithium battery under full working condition[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4029-4037. | |
14 | 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725. |
WU L X, PANG H, JIN J M, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725. | |
15 | ZHANG W G, SHI W, MA Z Y. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery[J]. Journal of Power Sources, 2015, 289: 50-62. |
16 | 刘新天, 何耀, 曾国建, 等. 考虑温度影响的锂电池功率状态估计[J]. 电工技术学报, 2016, 31(13): 155-163. |
LIU X T, HE Y, ZENG G J, et al. State-of-power estimation for Li-ion battery considering the effect of temperature[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 155-163. | |
17 | WANG Y J, PAN R, LIU C, et al. Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation[J]. Journal of Power Sources, 2018, 374: 12-23. |
18 | 蔡雪, 张彩萍, 张琳静, 等. 基于等效电路模型的锂离子电池峰值功率估计的对比研究[J]. 机械工程学报, 2021, 57(14): 64-76. |
CAI X, ZHANG C P, ZHANG L J, et al. Comparative study on state of power estimation of lithium ion battery based on equivalent circuit model[J]. Journal of Mechanical Engineering, 2021, 57(14): 64-76. | |
19 | LEE T K, KIM Y, STEFANOPOULOU A, et al. Hybrid electric vehicle supervisory control design reflecting estimated lithium-ion battery electrochemical dynamics[C]//Proceedings of the 2011 American Control Conference. June 29—July 1, 2011, San Francisco, CA, USA. IEEE, 2011: 388-395. |
20 | SMITH K A, RAHN C D, WANG C Y. Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries[J]. IEEE Transactions on Control Systems Technology, 2010, 18(3): 654-663. |
21 | PEREZ H, SHAHMOHAMMADHAMEDANI N, MOURA S. Enhanced performance of Li-ion batteries via modified reference governors and electrochemical models[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4): 1511-1520. |
22 | SUN F C, XIONG R, HE H W. Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions[J]. Journal of Power Sources, 2014, 259: 166-176. |
23 | 熊瑞, 闫良基, 王榘. 功率需求驱动的电动载运装备用动力电池充放电能力预测方法[J]. 机械工程学报, 2021, 57(20): 161-171. |
XIONG R, YAN L J, WANG J. Power demand-driven battery charging and discharging capability prediction method for electric vehicles[J]. Journal of Mechanical Engineering, 2021, 57(20): 161-171. |
[1] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[2] | Mingfei LI, Mumin RAO, Wanmei SUN, Shuxin CUI, Wei CHEN. Analysis method based on porous medium modeling for thermal management system of large capacity battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2526-2536. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Xinlei CAI, Kai DONG, Zijie MENG, Zhenfan YU, Boxiao WANG, Yang YU. AGC command tracking control strategy for battery energy storage power station based on optimized dynamic grouping technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1475-1481. |
[5] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[6] | Fulin FAN, Junhui LI, CAMPOS-GAONA David, Gangui YAN. Energy storage-friendly frequency response service markets: The UK perspective [J]. Energy Storage Science and Technology, 2022, 11(4): 1278-1288. |
[7] | Xiaohan LI, Lei SUN, Yong MA, Dongliang GUO, Peng XIAO, Jianjun LIU, Peng WU, Zhihang ZHANG, Xuebing HAN. Energy state estimation of lithium-ion batteries based on sage-husa EKF algorithm [J]. Energy Storage Science and Technology, 2022, 11(11): 3603-3612. |
[8] | Zhen YAO, Rui WANG, Xue YANG, Qi ZHANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Current situations and prospects of zinc-iron flow battery [J]. Energy Storage Science and Technology, 2022, 11(1): 78-88. |
[9] | Huan ZHU, Guojing LIU, Xing ZHANG, Fen YUE, Zhenhua YU. Policy and economic comparison of natural gas power generation and battery energy storage in peak regulation [J]. Energy Storage Science and Technology, 2021, 10(6): 2392-2402. |
[10] | Tianao ZHANG, Hao LIU, Yongchong CHEN, Qingsong WANG, Shuxing ZHANG, Qiquan ZENG. Intrinsic safety of energy storage in a high-capacity battery [J]. Energy Storage Science and Technology, 2021, 10(6): 2293-2302. |
[11] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
[12] | Chao ZHANG, Kai KANG, Sheng LU, Xinyu QIN, Yanbo HUANG, Zhengtian LI. Economic scheduling of renewable energy storage plants with integrated thermal management of energy storage systems and battery life [J]. Energy Storage Science and Technology, 2021, 10(4): 1353-1363. |
[13] | Jianjiang XIE, Xiang GAO, Chengqiang XIA, Yi ZHENG, Hao WANG. Research on information acquisition system of lithium battery energy storage cabin [J]. Energy Storage Science and Technology, 2021, 10(3): 1109-1116. |
[14] | Yanxin XIE, Shunli WANG, Weihao SHI, Xin XIONG, Xianpei CHEN. A new method of unscented particle filter for high-fidelity lithium-ion battery SOC estimation [J]. Energy Storage Science and Technology, 2021, 10(2): 722-731. |
[15] | Peng YU, Shunli WANG, Chunmei YU. SOC estimation of lithium batteries based on improved fractional-order extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(1): 335-341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||