Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (6): 1928-1945.doi: 10.19799/j.cnki.2095-4239.2023.0005
• Energy Storage System and Engineering • Previous Articles Next Articles
Jiajun ZHANG1,3,4(), Xiaoqiong LI2, Zhentao ZHANG2,3, Jiahao HAO2,3,4, Pingyang ZHENG2,3,4, Ze YU3,4, Junling YANG2, Yanan JING5, Yunkai YUE2,3,4()
Received:
2023-01-06
Revised:
2022-04-06
Online:
2023-06-05
Published:
2023-06-21
Contact:
Yunkai YUE
E-mail:z18842162443@163.com;yueyunkai@mail.ipc.ac.cn
CLC Number:
Jiajun ZHANG, Xiaoqiong LI, Zhentao ZHANG, Jiahao HAO, Pingyang ZHENG, Ze YU, Junling YANG, Yanan JING, Yunkai YUE. Research progress of compressed carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945.
1 | Energy & Climate Intelligence Unit. Net zero emissions race[EB/OL]. [2020-08-20] https://eciu.net/netzerotracker/map. |
2 | 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[N]. 人民日报, 2023-03-01(009). |
State Statistical Bureau. Statistical Bulletin of the People's Republic of China 2022[N]. People's Daily, 2023-03-01 (009). | |
3 | HAMEER S, VAN NIEKERK J L. A review of large-scale electrical energy storage[J]. International Journal of Energy Research, 2015, 39(9): 1179-1195. |
4 | 习近平. 继往开来, 开启全球应对气候变化新征程——在气候雄心峰会上的讲话[J].一带一路报道(中英文), 2021, 27(1): 20-21. |
XI J P. Following the past, start a new journey of global response to climate change-a speech at the Climate Abstellar Summit[J]. Belt and Road Report (Chinese and English), 2021, 27(1): 20-21. | |
5 | 中国电力企业联合会. 新能源配储能运行情况调研报告[R]. 海口: 中电联, 2022. |
China Electricity Council. New energy distribution storage operation research report[R]. Haikou: China Electricity Council, 2022. | |
6 | 陈永翀, 李爱晶, 刘丹丹, 等. 储能技术在能源互联网系统中应用与发展展望[J]. 电器与能效管理技术, 2015(24): 39-44. |
CHEN Y C, LI A J, LIU D D, et al. Application and development of energy storage in energy Internet system[J]. Low Voltage Apparatus, 2015(24): 39-44. | |
7 | NYAMDASH B, DENNY E, O'MALLEY M. The viability of balancing wind generation with large scale energy storage[J]. Energy Policy, 2010, 38(11): 7200-7208. |
8 | 吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析[J]. 电力学报, 2021, 36(5): 434-443. |
WU H W, WANG J, GONG Y L, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36(5): 434-443. | |
9 | 李建林, 李雅欣, 周喜超. 电网侧储能技术研究综述[J]. 电力建设, 2020, 41(6):77-84. |
LI J L, LI Y X, ZHOU X C. Summary of research on grid-side energy storage technology[J]. Electric Power Construction, 2020, 41(6): 77-84. | |
10 | VILANOVA M R N, FLORES A T, BALESTIERI J A P. Pumped hydro storage plants: A review[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(8): 1-14. |
11 | ZHAO H R, WU Q W, HU S J, et al. Review of energy storage system for wind power integration support[J]. Applied Energy, 2015, 137: 545-553. |
12 | HUNT J D, BYERS E, WADA Y, et al. Global resource potential of seasonal pumped hydropower storage for energy and water storage[J]. Nature Communications, 2020, 11: 947. |
13 | YU Q H, WANG Q C, TAN X, et al. A review of compressed-air energy storage[J]. Journal of Renewable and Sustainable Energy, 2019, 11(4): doi: 10.1063/1.5095969. |
14 | BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. |
15 | KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air[J]. Sustainable Energy Technologies and Assessments, 2015, 11: 159-164. |
16 | ALAMI A H, HAWILI A A, HASSAN R, et al. Experimental study of carbon dioxide as working fluid in a closed-loop compressed gas energy storage system[J]. Renewable Energy, 2019, 134: 603-611. |
17 | ZHU R, HAN B C, DONG K, et al. A review of carbon dioxide disposal technology in the converter steelmaking process[J].International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1421-1429. |
18 | FU L P, REN Z K, SI W Z, et al. Research progress on CO2 capture and utilization technology[J]. Journal of CO2 Utilization, 2022, 66: doi: 10.1016/j.jcou.2022.102260. |
19 | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. | |
20 | 杨科, 张远, 李雪梅, 等. 一种以二氧化碳为工质的压缩气体储能系统: CN203420754U[P]. 2014-02-05. |
YANG K, ZHANG Y, LI X M, et al. Energy storage system of compressed gas with carbon dioxide as working medium: CN203420754U[P]. 2014-02-05. | |
21 | 郝佳豪, 越云凯, 张振涛, 等. 一种跨临界二氧化碳储能系统: CN114622960A[P]. 2022-06-14. |
HAO J H, YUE Y K, ZHANG Z T, et al. Transcritical carbon dioxide energy storage system: CN114622960A[P]. 2022-06-14. | |
22 | 韩越, 李睿, 孙世超, 等. 压缩空气储能+的多能耦合技术研究进展[J]. 能源研究与利用, 2022(3): 25-29. |
HAN Y, LI R, SUN S C, et al. Research progress of multi-energy coupling technology for compressed air energy storage+[J]. Energy Research & Utilization, 2022(3): 25-29. | |
23 | 苗颖. 四川德阳全球首个二氧化碳+飞轮储能示范项目进入收尾调试阶段[J]. 施工企业管理, 2022, 409(9): 118. |
24 | HE Q, LIU H, HAO Y P, et al. Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis[J]. Renewable Energy, 2018, 127: 835-849. |
25 | 韩中合, 郭森闯, 王珊, 等. 不同工质和储气室下压气储能系统的特性研究[J]. 太阳能学报, 2020, 41(9): 29-35. |
HAN Z H, GUO S C, WANG S, et al. Investigation of characteristics of compressed gas energy storage system under different working mediums and gas storage chambers[J]. Acta Energiae Solaris Sinica, 2020, 41(9): 29-35. | |
26 | ZHANG Y, YANG K, HONG H, et al. Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid[J]. Renewable Energy, 2016, 99: 682-697. |
27 | 喻浩. 深部含水层压缩二氧化碳储能系统的数值模拟研究[D]. 长沙: 长沙理工大学, 2019. |
YU H. Numerical simulation of compressed carbon dioxide energy storage system in deep aquifer[D]. Changsha: Changsha University of Science & Technology, 2019. | |
28 | LI Y, YU H, TANG D, et al. A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods[J]. Renewable Energy, 2022, 187: 1130-1153. |
29 | 刘辉. 超临界压缩二氧化碳储能系统热力学特性与热经济性研究[D]. 北京: 华北电力大学(北京), 2017. |
LIU H. Study on thermodynamic characteristics and thermal economy of supercritical compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2017. | |
30 | 何青, 郝银萍, 刘文毅. 一种新型跨临界压缩二氧化碳储能系统热力分析与改进[J]. 华北电力大学学报(自然科学版), 2020, 47(5): 93-101. |
HE Q, HAO Y P, LIU W Y. Thermodynamic analysis and improvement of novel trans-critical compressed carbon dioxide energy storage system[J]. Journal of North China Electric Power University, 2020, 47(5): 93-101. | |
31 | ZHANG X R, WANG G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41(10): 1487-1503. |
32 | XU W P, ZHAO P, LIU A J, et al. Design and off-design performance analysis of a liquid carbon dioxide energy storage system integrated with low-grade heat source[J]. Applied Thermal Engineering, 2023, 228: doi: 10.1016/j.applthermaleng.2023. 120570. |
33 | 刘青山, 葛俊, 黄葆华, 等. 储能压力对液态压缩空气储能系统特性的影响[J]. 西安交通大学学报, 2019, 53(11): 1-9. |
LIU Q S, GE J, HUANG B H, et al. Influence of energy storage pressure on the characteristics of liquid air energy storage system[J]. Journal of Xi'an Jiaotong University, 2019, 53(11): 1-9. | |
34 | LIU Z, LIU Z H, XIN X, et al. Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis[J]. Applied Energy, 2020, 269: doi: 10.1016/j.apenergy.2020. 115067. |
35 | BORRI E, TAFONE A, ROMAGNOLI A, et al. A review on liquid air energy storage: History, state of the art and recent developments[J]. Renewable and Sustainable Energy Reviews, 2021, 137: doi: 10.1016/j.rser.2020.110572. |
36 | WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823. |
37 | WANG M K, ZHAO P, YANG Y, et al. Performance analysis of energy storage system based on liquid carbon dioxide with different configurations[J]. Energy, 2015, 93: 1931-1942. |
38 | WU C, WAN Y K, LIU Y, et al. Thermodynamic simulation and economic analysis of a novel liquid carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105544. |
39 | LIU S C, WU S C, HU Y K, et al. Comparative analysis of air and CO2 as working fluids for compressed and liquefied gas energy storage technologies[J]. Energy Conversion and Management, 2019, 181: 608-620. |
40 | 吴毅, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016, 50(3): 45-49, 100. |
WU Y, HU D S, WANG M K, et al. A novel transcritical CO2 energy storage system[J]. Journal of Xi'an Jiaotong University, 2016, 50(3): 45-49, 100. | |
41 | 杨征, 陈海生, 王亮, 等. 蓄热对超临界空气储能系统性能的影响[J]. 电力建设, 2016, 37(8): 33-37. |
YANG Z, CHEN H S, WANG L, et al. Influence of thermal energy storage on performance of supercritical air energy storage system[J]. Electric Power Construction, 2016, 37(8): 33-37. | |
42 | 王俊, 曹建军, 张利勇, 等. 基于分布式能源系统的蓄冷蓄热技术应用现状[J]. 储能科学与技术, 2020, 9(6): 1847-1857. |
WANG J, CAO J J, ZHANG L Y, et al. Review on application of cold storage and heat storage technology based on distributed energy system[J]. Energy Storage Science and Technology, 2020, 9(6): 1847-1857. | |
43 | SUN W X, LIU X, YANG X Q, et al. Design and thermodynamic performance analysis of a new liquid carbon dioxide energy storage system with low pressure stores[J]. Energy Conversion and Management, 2021, 239: doi: 10.1016/j.enconman.2021. 114227. |
44 | TANG B, SUN L, XIE Y H. Comprehensive performance evaluation and optimization of a liquid carbon dioxide energy storage system with heat source[J]. Applied Thermal Engineering, 2022, 215: doi: 10.1016/j.applthermaleng.2022.118957. |
45 | 吴思成. 压缩CO2储能的系统分析及实验验证[D]. 天津: 天津商业大学, 2019. |
WU S C. System analysis and experimental verification of compressed CO2 energy storage[D]. Tianjin: Tianjin University of Commerce, 2019. | |
46 | 李玉平. 压缩二氧化碳储能系统的热力学性能分析[D]. 北京: 华北电力大学, 2018. |
LI Y P. Thermodynamic performance analysis of compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2018. | |
47 | 李玉平, 徐玉杰, 李斌, 等. 跨临界二氧化碳储能系统研究[J]. 中国电机工程学报, 2018, 38(21): 6367-6374. |
LI Y P, XU Y J, LI B, et al. Research on transcritical carbon dioxide energy storage system[J]. Proceedings of the CSEE, 2018, 38(21): 6367-6374. | |
48 | XU M J, WANG X, WANG Z H, et al. Preliminary design and performance assessment of compressed supercritical carbon dioxide energy storage system[J]. Applied Thermal Engineering, 2021, 183: doi: 10.1016/j.applthermaleng.2020.116153. |
49 | ZHANG J J, ZHOU S N, SONG W J, et al. Performance analysis of a compressed liquid carbon dioxide energy storage system[J]. Energy Procedia, 2018, 152: 168-173. |
50 | LU C, HE Q, HAO Y P, et al. Thermodynamic analysis and efficiency improvement of trans-critical compressed carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105480. |
51 | DINCER I, ROSEN M A. Energy, environment and sustainable development[J]. Applied Energy, 1999, 64(1/2/3/4): 427-440. |
52 | TSATSARONIS G, MOROSUK T. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas[J]. Energy, 2010, 35(2): 820-829. |
53 | 李乐璇, 徐玉杰, 尹钊, 等. 超临界二氧化碳储能系统㶲损特性分析[J]. 储能科学与技术, 2021, 10(5): 1824-1834. |
LI L X, XU Y J, YIN Z, et al. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834. | |
54 | LIU Z, LIU Z H, YANG X Q, et al. Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system[J]. Energy Conversion and Management, 2020, 205: doi: 10.1016/j.enconman.2019.112391. |
55 | ZHANG Y, YAO E R, WANG T Y. Comparative analysis of compressed carbon dioxide energy storage system and compressed air energy storage system under low-temperature conditions based on conventional and advanced exergy methods[J]. Journal of Energy Storage, 2021, 35: doi: 10.1016/j.est.2021.102274. |
56 | ZHANG Y, LIANG T Y, YANG K. An integrated energy storage system consisting of compressed carbon dioxide energy storage and organic Rankine cycle: Exergoeconomic evaluation and multi-objective optimization[J]. Energy, 2022, 247: doi: 10.1016/j.energy.2022.123566. |
57 | CAO Z, DENG J Q, ZHOU S H, et al. Research on the feasibility of compressed carbon dioxide energy storage system with underground sequestration in antiquated mine goaf[J]. Energy Conversion and Management, 2020, 211: doi: 10.1016/j.enconman.2020.112788. |
58 | CHAE Y J, LEE J I. Thermodynamic analysis of compressed and liquid carbon dioxide energy storage system integrated with steam cycle for flexible operation of thermal power plant[J]. Energy Conversion and Management, 2022, 256: doi: 10.1016/j.enconman.2022.115374. |
59 | 严晓生, 王小东, 韩旭, 等. 液态压缩二氧化碳储能与火电机组耦合方案研究[J]. 热力发电, 2023, 52(2): 90-100. |
YAN X S, WANG X D, HAN X, et al. Study on coupling scheme of liquid compressed carbon dioxide energy storage system and thermal power unit[J]. Thermal Power Generation, 2023, 52(2): 90-100. | |
60 | 郝银萍. 跨临界压缩二氧化碳储能系统热力学特性及技术经济性研究[D]. 北京: 华北电力大学, 2021. |
HAO Y P. Study on thermodynamic characteristics and technical economy of transcritical compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2021. | |
61 | 陶飞跃, 王焕然, 李瑞雄, 等. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501. |
TAO F Y, WANG H R, LI R X, et al. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling[J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. | |
62 | FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247: doi: 10.1016/j.enconman.2021.114757. |
63 | XU M J, ZHAO P, HUO Y W, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system[J]. Journal of Cleaner Production, 2020, 242: doi: 10.1016/j.jclepro.2019. 118437. |
[1] | Xiaoxia SUN, Zhonghua GUI, Ziyu GAO, Bingqian ZHOU, Xia LIU, Xinjing ZHANG, Huan GUO, Wen LI, Yong SHENG, Yangli ZHU, Jian ZHOU, Yujie XU. Dynamic characteristics of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1840-1853. |
[2] | Tingting QIN, Xuezhi ZHOU, Dingzhang GUO, Yong SHENG, Yujie XU, Zhitao ZUO, Hui LI, Haisheng CHEN. Study on factors influencing rail gravity energy storage system efficiency [J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. |
[3] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[4] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[5] | Ziyan ZHANG, Junyan ZHANG. International competition of key energy storage technologies based on high-quality patents [J]. Energy Storage Science and Technology, 2022, 11(1): 321-334. |
[6] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[7] | Shenghui ZHOU, Yang HE, Haisheng CHEN, Yujie XU, Jianqiang DENG. Using an ejector to intensify the charging process of a compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1503-1513. |
[8] | Yang LI, Xinjing ZHANG, Jianfei SONG, Xiaoyu LI, Huan GUO, Yujie XU, Haisheng CHEN. Dynamic regulation and control of the discharge process in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523. |
[9] | Lexuan LI, Yujie XU, Zhao YIN, Huan GUO, Xianrong ZHANG, Haisheng CHEN, Xuezhi ZHOU. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834. |
[10] | Zhonghao RAO, Chenzhen LIU, Yutao HUO, Jiateng ZHAO, Changhui LIU. Practice and exploration of teaching for interdisciplinary outstanding and innovative talents training oriented to energy storage technology [J]. Energy Storage Science and Technology, 2021, 10(3): 1206-1212. |
[11] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[12] | LIU Qinghua, ZHANG Sai, JIANG Mingzhe, WANG Qiushi, XING Xueqi, YANG Hong, HUANG Feng, LEMMON P John, MIAO Ping. Study on the low-cost flow battery technologies for energy storage [J]. Energy Storage Science and Technology, 2019, 8(S1): 60-64. |
[13] | XIA Xinmao, GUAN Honghao, DING Pengfei, MENG Gaojun. Capacity allocation and optimization strategy of an energy storage system based on an improved quantum genetic algorithm [J]. Energy Storage Science and Technology, 2019, 8(3): 551-558. |
[14] | WANG Jianglin, XU Xueliang, DING Qingqing, ZHU Junping, MA Yongquan, ZHAO Lei, LIU Xiaowei. Application and prospect of zinc nickel battery in energy storage technology [J]. Energy Storage Science and Technology, 2019, 8(3): 506-511. |
[15] | CHEN Rubo. Some thoughts on energy storage system and sponge city [J]. Energy Storage Science and Technology, 2017, 6(S1): 52-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||