Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 36-47.doi: 10.19799/j.cnki.2095-4239.2023.0327
Previous Articles Next Articles
Mingxun JIA1,2,3,4(), Tong WU1,2,3,4(), Daotong YANG1,2,3,4, Xiaoxi QIN1,2,3,4, Jinghai LIU1,2,3,4, Limei DUAN1,2,3,4()
Received:
2023-05-09
Revised:
2023-05-23
Online:
2024-01-05
Published:
2024-01-22
Contact:
Tong WU, Limei DUAN
E-mail:584111659@qq.com;wutong932@163.com;duanlmxie@126.com
CLC Number:
Mingxun JIA, Tong WU, Daotong YANG, Xiaoxi QIN, Jinghai LIU, Limei DUAN. Electrolyte multifunctional additives of lithium-sulfur battery: Mechanism of action and advanced characterization[J]. Energy Storage Science and Technology, 2024, 13(1): 36-47.
Fig. 2
(a) HRTEM test of SEI; (b) Schematic diagram of LiF-rich SEI[29]; (c) Schematic diagram of polysulfide shuttling and passivation measured in a lithium metal negative electrode in a conventional lithium-sulfur battery; (d) Schematic diagram of inhibition of polysulfide shuttle and lithium dendrite formation in the A-SEI layer[30]"
1 | BAŞAR S, TOSUN B. Environmental Pollution Index and economic growth: Evidence from OECD countries[J]. Environmental Science and Pollution Research, 2021, 28(27): 36870-36879. |
2 | FRETZ S J, PAL U, GIRARD G M A, et al. Lithium sulfonate functionalization of carbon cathodes as a substitute for lithium nitrate in the electrolyte of lithium-sulfur batteries[J]. Advanced Functional Materials, 2020, 30(35): 2002485. |
3 | LI C C, GE W N, QI S Y, et al. Manipulating electrocatalytic polysulfide redox kinetics by 1D core-shell like composite for lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(16): 2103915. |
4 | WANG S Z, LIAO J X, YANG X F, et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries[J]. Nano Energy, 2019, 57: 230-240. |
5 | FENG L X, YU P, FU X W, et al. Regulating polysulfide diffusion and deposition via rational design of core-shell active materials in Li-S batteries[J]. ACS Nano, 2022, 16(5): 7982-7992. |
6 | YANG X F, LI X, ADAIR K, et al. Structural design of lithium-sulfur batteries: From fundamental research to practical application[J]. Electrochemical Energy Reviews, 2018, 1(3): 239-293. |
7 | CHEN Y, WANG T Y, TIAN H J, et al. Advances in lithium-sulfur batteries: From academic research to commercial viability[J]. Advanced Materials, 2021, 33(29): e2003666. |
8 | WANG Z Y, GE H L, LIU S, et al. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries[J]. Energy & Environmental Materials, 2023, 6(3): doi: 10.1002/eem2.12358. |
9 | WANG B, WANG L, ZHANG B, et al. Niobium diboride nanoparticles accelerating polysulfide conversion and directing Li2S nucleation enabled high areal capacity lithium-sulfur batteries[J]. ACS Nano, 2022, 16(3): 4947-4960. |
10 | ZHANG H, ONO L K, TONG G Q, et al. Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge[J]. Nature Communications, 2021, 12: 4738. |
11 | XUE P, ZHU K P, GONG W B, et al. "one stone two birds" design for dual-functional TiO2-TiN heterostructures enabled dendrite-free and kinetics-enhanced lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(18): 2200308. |
12 | ZHANG C, ZHANG C, PAN J, et al.Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium-sulfur batteries. eScience 2022, 2, 405-415. |
13 | XU J, XU L L, ZHANG Z L, et al. Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as Two-in-one hosts for cathode and anode protection of Lithium-Sulfur full batteries[J]. Energy Storage Materials, 2022, 47: 223-234. |
14 | WU T, YE J T, LI T N, et al. Tetrathiafulvalene as a multifunctional electrolyte additive for simultaneous interface amelioration, electron conduction, and polysulfide redox regulation in lithium-sulfur batteries[J]. Journal of Power Sources, 2022, 536: 231482. |
15 | WU T, SUN G R, LU W, et al. A polypyrrole/black-TiO2/S double-shelled composite fixing polysulfides for lithium-sulfur batteries[J]. Electrochimica Acta, 2020, 353: 136529. |
16 | 马康, 高志浩, 骆林, 等. 锂硫电池隔膜在不同抑制"穿梭效应"策略中的研究进展[J]. 储能科学与技术, 2022, 11(11): 3521-3533. |
MA K, GAO Z H, LUO L, et al. Research progress on lithium-sulfur battery separators for different strategies to inhibit the "shuttle effect"[J]. Energy Storage Science and Technology, 2022, 11(11): 3521-3533. | |
17 | 姚琳, 周玲, 李世雄, 等. 层层自组装MoS2多晶片增强锂硫电池性能[J]. 储能科学与技术, 2019, 8(3): 523-531. |
YAO L, ZHOU L, LI S X, et al. Edge-rich MoS2 nanosheets for high performance self-supporting Li-S batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 523-531. | |
18 | LIANG G M, WU J X, QIN X Y, et al. Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium-sulfur battery[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23105-23113. |
19 | LI Z, ZHANG F, TANG L B, et al. High areal loading and long-life cycle stability of lithium-sulfur batteries achieved by a dual-function ZnS-modified separator[J]. Chemical Engineering Journal, 2020, 390: 124653. |
20 | LI G C, LI G R, YE S H, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Advanced Energy Materials, 2012, 2(10): 1238-1245. |
21 | WANG F F, LI J, ZHAO J A, et al. Single-atom electrocatalysts for lithium sulfur batteries: Progress, opportunities, and challenges[J]. ACS Materials Letters, 2020, 2(11): 1450-1463. |
22 | ZHOU T, LIANG J N, YE S H, et al. Fundamental, application and opportunities of single atom catalysts for Li-S batteries[J]. Energy Storage Materials, 2023, 55: 322-355. |
23 | LI Z N, SAMI I, YANG J, et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries[J]. Nature Energy, 2023, 8(1): 84-93. |
24 | LUO C, LIANG X, SUN Y F, et al. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 33: 290-297. |
25 | CUISINIER M, -E CABELGUEN P, ADAMS B D, et al. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy & Environmental Science, 2014, 7(8): 2697-2705. |
26 | YE Y F, SONG M K, XU Y, et al. Lithium nitrate: A double-edged sword in the rechargeable lithium-sulfur cell[J]. Energy Storage Materials, 2019, 16: 498-504. |
27 | JOZWIUK A, BERKES B B, WEIß T, et al. The critical role of lithium nitrate in the gas evolution of lithium-sulfur batteries[J]. Energy & Environmental Science, 2016, 9(8): 2603-2608. |
28 | ZHANG S S. A new finding on the role of LiNO3 in lithium-sulfur battery[J]. Journal of Power Sources, 2016, 322: 99-105. |
29 | LI J R, LIU S F, CUI Y L, et al. Potassium hexafluorophosphate additive enables stable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56017-56026. |
30 | WU P, DONG M X, TAN J A, et al. Revamping lithium-sulfur batteries for high cell-level energy density by synergistic utilization of polysulfide additives and artificial solid-electrolyte interphase layers[J]. Advanced Materials, 2021, 33(48): 2104246. |
31 | WU H L, SHIN M, LIU Y M, et al. Thiol-based electrolyte additives for high-performance lithium-sulfur batteries[J]. Nano Energy, 2017, 32: 50-58. |
32 | XIANG Q A, SHI C Y, ZHANG X Y, et al. Thiuram vulcanization accelerators as polysulfide scavengers to suppress shuttle effects for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29970-29977. |
33 | LIAN J, GUO W, FU Y Z. Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li-S batteries[J]. Journal of the American Chemical Society, 2021, 143(29): 11063-11071. |
34 | ZHANG W, MA F F, WU Q A, et al. Bifunctional fluorinated anthraquinone additive for improving kinetics and interfacial chemistry in rechargeable Li-S batteries[J]. ACS Applied Energy Materials, 2022, 5(12): 15719-15728. |
35 | HE L A, SHAO S Y, ZONG C X, et al. Electrode interface engineering in lithium-sulfur batteries enabled by a trifluoroacetamide-based electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 31814-31823. |
36 | LIU F Y, ZONG C X, HE L, et al. Improving the electrochemical performance of lithium-sulfur batteries by interface modification with a bifunctional electrolyte additive[J]. Chemical Engineering Journal, 2022, 443: 136489. |
37 | KANG X Y, JIN Z Q, PENG H Q, et al. The role of selenium vacancies functionalized mediator of bimetal (Co, Fe) selenide for high-energy-density lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2023, 637: 161-172. |
38 | ZHAO M, CHEN X, LI X Y, et al. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(13): e2007298. |
39 | ZHANG W, MA F F, WU Q A, et al. Dual-functional organotelluride additive for highly efficient sulfur redox kinetics and lithium regulation in lithium-sulfur batteries[J]. Energy & Environmental Materials, 2023, 6(3): doi: 10.1002/eem2.12369. |
40 | LOWE M A, GAO J, ABRUÑA H D. Mechanistic insights into operational lithium-sulfur batteries by in situ X-ray diffraction and absorption spectroscopy[J]. RSC Advances, 2014, 4(35): 18347-18353. |
41 | CAÑAS N A, WOLF S, WAGNER N, et al. In-situ X-ray diffraction studies of lithium-sulfur batteries[J]. Journal of Power Sources, 2013, 226: 313-319. |
42 | CUISINIER M, CABELGUEN P E, EVERS S, et al. Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry Letters, 2013, 4(19): 3227-3232. |
43 | KIM H, LEE J T, MAGASINSKI A, et al. In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes[J]. Advanced Energy Materials, 2015, 5(24): 1501306. |
44 | YANG Z Z, ZHU Z Y, MA J E, et al. Phase separation of Li2S/S at nanoscale during electrochemical lithiation of the solid-state lithium-sulfur battery using in situ TEM[J]. Advanced Energy Materials, 2016, 6(20): 1600806. |
45 | TAN G Q, XU R, XING Z Y, et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries[J]. Nature Energy, 2017, 2: 17090. |
46 | NELSON WEKER J, TONEY M F. Emerging in situ and operando nanoscale X-ray imaging techniques for energy storage materials[J]. Advanced Functional Materials, 2015, 25(11): 1622-1637. |
47 | LIN C N, CHEN W C, SONG Y F, et al. Understanding dynamics of polysulfide dissolution and re-deposition in working lithium-sulfur battery by in-operando transmission X-ray microscopy[J]. Journal of Power Sources, 2014, 263: 98-103. |
48 | LI Y J, FAN J M, ZHENG M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy & Environmental Science, 2016, 9(6): 1998-2004. |
49 | LANG S Y, SHI Y, GUO Y G, et al. Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie International Edition, 2016, 55(51): 15835-15839. |
50 | MAHANKALI K, THANGAVEL N K, REDDY ARAVA L M. In situ electrochemical mapping of lithium-sulfur battery interfaces using AFM-SECM[J]. Nano Letters, 2019, 19(8): 5229-5236. |
51 | WATANABE H, UENO K, DOKKO K, et al. In situ impedance spectra analysis of lithium-sulfur battery using sulfolane-based super-concentrated electrolyte solution[J]. ECS Meeting Abstracts, 2021, (1): 31. |
52 | NELSON J, MISRA S, YANG Y A, et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(14): 6337-6343. |
53 | CONDER J, BOUCHET R, TRABESINGER S, et al. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction[J]. Nature Energy, 2017, 2: 17069. |
54 | WANG D R, SHAH D B, MASLYN J A, et al. Rate constants of electrochemical reactions in a lithium-sulfur cell determined by operando X-ray absorption spectroscopy[J]. Journal of the Electrochemical Society, 2018, 165(14): A3487-A3495. |
55 | ZHANG L, LING M, FENG J, et al. The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries[J]. Energy Storage Materials, 2018, 11: 24-29. |
56 | ZHANG Y W, LUO Y T, FINCHER C, et al. In-situ measurements of stress evolution in composite sulfur cathodes[J]. Energy Storage Materials, 2019, 16: 491-497. |
57 | XU Z L, KIM S J, CHANG D, et al. Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries[J]. Energy & Environmental Science, 2019, 12(10): 3144-3155. |
58 | WANG H, SA N Y, HE M N, et al. In situ NMR observation of the temporal speciation of lithium sulfur batteries during electrochemical cycling[J]. The Journal of Physical Chemistry C, 2017, 121(11): 6011-6017. |
59 | WU H L, HUFF L A, GEWIRTH A A. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1709-1719. |
[1] | Xupeng XU, Xuming XU, Hongyan CHEN, LIANGYaru, Weixin LEI, Zengsheng MA, Guoxin CHEN, Peiling KE. Applications of in situ characterization techniques in the study of lithium-sulfur battery mechanisms [J]. Energy Storage Science and Technology, 2024, 13(4): 1239-1252. |
[2] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
[3] | Shun ZHANG, Fanglei ZENG, Ning LI, Ningyi YUAN. Study on the preparation and properties of high-flame retardant sulfur cathode [J]. Energy Storage Science and Technology, 2023, 12(4): 1018-1024. |
[4] | Liyuan SHEN, Guixin ZHANG, Zhaoling MA. Catalytic conversion performance study of O-doped NiCo2S4/CNT composites for Li polysulfides [J]. Energy Storage Science and Technology, 2023, 12(11): 3318-3329. |
[5] | Yuqi SUN, Feng WEI, Hong ZHOU, Chaofeng ZHOU. Analysis of global lithium-sulfur battery technology competition from the perspective of patent [J]. Energy Storage Science and Technology, 2022, 11(5): 1657-1666. |
[6] | Bin XIE, Jia'nan SUN. Development of high specific energy lithium-sulfur cell module based on mechanical simulations [J]. Energy Storage Science and Technology, 2021, 10(2): 586-597. |
[7] | YE Ge, YUAN Hong, ZHAO Chenzi, ZHU Gaolong, XU Lei, HOU Lipeng, CHENG Xinbing, HE Chuanxin, NAN Haoxiong, LIU Quanbin, HUANG Jiaqi, ZHANG Qiang. Balance between ion migration and electron transport in composite cathodes for all-solid-state lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 339-345. |
[8] | YAO Lin, ZHOU Ling, LI Shixiong, LI Xiaomin, HE Kai, HE Qingquan, ZAI Jiantao, REN Qizhi, QIAN Xuefeng. Edge-rich MoS2 nanosheets for high performance self-supporting Li-S batteries [J]. Energy Storage Science and Technology, 2019, 8(3): 523-531. |
[9] | HU Cejun, YANG Jijin, WANG Hangchao, CHEN Yifan, ZHANG Rongrong, LIU Wen, SUN Xiaoming. Research progress of safe lithium sulfur batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1082-1093. |
[10] | PEI Haijuan, GUO Rui, LI Yong, LIU Wen, CHEN Zhujun, WANG Yong, XIE Jingying. Conductive carbon-coated separator for high sulfur-loading lithium sulfur batteries [J]. Energy Storage Science and Technology, 2018, 7(1): 56-. |
[11] | YAN Changqing, CAO Yong. Patent analysis of lithium-sulfur battery technology in China [J]. Energy Storage Science and Technology, 2017, 6(S1): 74-. |
[12] | CHEN Yuqing1,2, ZHANG Hongzhang1,3, YU Ying1,2, QU Chao1, LI Xianfeng1,3, ZHANG Huamin1,3. The R&D status and prospects for primary lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 529-533. |
[13] | XU Na, WANG Mengfan, QIAN Tao, YAN Chenglin. Application of in-situ UV/vis analysis in lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 522-528. |
[14] | TANG Zhen, XIONG Chuanxi. Agar as water soluble binder for lithium-sulfur battery [J]. Energy Storage Science and Technology, 2017, 6(3): 493-499. |
[15] | XU Rui1, ZHAO Meng1, HUANG Jiaqi1,2. Progress in composite separators for lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 433-450. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||