Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3299-3306.doi: 10.19799/j.cnki.2095-4239.2023.0505
• Energy Storage Materials and Devices • Previous Articles Next Articles
Guihong GAO1(), Fuyuan LIU1, Shenshen LI1, Xiangkun WU1,2, Yanxia LIU1,2()
Received:
2023-07-21
Revised:
2023-08-07
Online:
2023-11-05
Published:
2023-11-16
Contact:
Yanxia LIU
E-mail:1019660339@qq.com;yxliu@ipe.ac.cn
CLC Number:
Guihong GAO, Fuyuan LIU, Shenshen LI, Xiangkun WU, Yanxia LIU. Effect of binary composite conductive agent on the performance of lithium slurry battery[J]. Energy Storage Science and Technology, 2023, 12(11): 3299-3306.
Fig. 2
SEM of composite conductive agent in slurry (a) 1%KB+0.3%CNTs; (b) 1%KB+0.3%CNTs; (c) 1%Cabot+0.3%CNTs; (d) 1%Cabot+0.3%CNTs; (e) 1%KB+0.5%Gen; (f) 1%KB+0.5%Gen; (g) 1%Cabot+0.5%Gen; (h) 1%Cabot+0.5%Gen. Including, (a), (c), (e), (g) the magnification is 10,000 times,(b), (d), (f), (h) the magnification is 50,000 times"
1 | 辛本舰, 王瑞, 胡阳, 等. 导电剂对LiFePO4锂浆料电池性能的影响[J]. 中国科学: 化学, 2022, 52(7): 1148-1155. |
XIN B J, WANG R, HU Y, et al. The effect of conductive additives on electrochemical performance of LiFePO4-based lithium slurry batteries[J]. Scientia Sinica (Chimica), 2022, 52(7): 1148-1155. | |
2 | SONG H, OH Y, ÇAKMAKÇı N, et al. Effects of the aspect ratio of the conductive agent on the kinetic properties of lithium ion batteries[J]. RSC Advances, 2019, 9(70): 40883-40886. |
3 | KIM K J, LEE T S, KIM H G, et al. A hard carbon/microcrystalline graphite/carbon composite with a core-shell structure as novel anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2014, 135: 27-34. |
4 | MAO C Y, WOOD M, DAVID L, et al. Selecting the best graphite for long-life, high-energy Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(9): A1837-A1845. |
5 | HATZELL K B, BOOTA M, KUMBUR E C, et al. Flowable conducting particle networks in redox-active electrolytes for grid energy storage[J]. Journal of the Electrochemical Society, 2015, 162(5): A5007-A5012. |
6 | HAN Y J, KIM J, YEO J S, et al. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch[J]. Carbon, 2015, 94: 432-438. |
7 | CHEN H N, ZOU Q L, LIANG Z J, et al. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries[J]. Nature Communications, 2015, 6: 5877. |
8 | FAN F Y, WOODFORD W H, LI Z, et al. Polysulfide flow batteries enabled by percolating nanoscale conductor networks[J]. Nano Letters, 2014, 14(4): 2210-2218. |
9 | LUO L W, ZHANG C, XIONG P X, et al. A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries[J]. Science China Chemistry, 2021, 64(1): 72-81. |
10 | XIE H Y, HAO Q, JIN H C, et al. Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: A mechanism based on a Galton Board[J]. Science China Chemistry, 2020, 63(9): 1306-1314. |
11 | HUANG K, ZHOU P, CHEN H N. Systematic optimization of high-energy-density Li-Se semi-solid flow battery[J]. Energy Technology, 2021, 9(8): doi: 10.1002/ente.202100371. |
12 | BI S S, WANG S, YUE F, et al. A rechargeable aqueous manganese-ion battery based on intercalation chemistry[J]. Nature Communications, 2021, 12: 6991. |
13 | PENG M K, WANG L, LI L B, et al. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors[J]. eScience, 2021, 1(1): 83-90. |
14 | 李健, 官亦标, 傅凯, 等. 碳纳米管与石墨烯在储能电池中的应用[J]. 化学进展, 2014, 26(7): 1233-1243. |
LI J, GUAN Y B, FU K, et al. Applications of carbon nanotubes and graphene in the energy storage batteries[J]. Progress in Chemistry, 2014, 26(7): 1233-1243. | |
15 | YAO M J, YUAN Z S, LI S S, et al. Scalable assembly of flexible ultrathin all-in-one zinc-ion batteries with highly stretchable, editable, and customizable functions[J]. Advanced Materials, 2021, 33(10): doi: 10.1002/adma.202008140. |
17 | ZHAO M, LI X Y, CHEN X, et al. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries[J]. eScience, 2021, 1(1): 44-52. |
18 | LIU D Y, YANG L, CHEN Z Y, et al. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries[J]. Science Bulletin, 2020, 65(12): 1003-1012. |
19 | HE Y N, XU Y F, ZHANG M, et al. Confining ultrafine SnS nanoparticles in hollow multichannel carbon nanofibers for boosting potassium storage properties[J]. Science Bulletin, 2022, 67(2): 151-160. |
20 | ZHANG Y, WANG Q R, BI S S, et al. Flexible all-in-one zinc-ion batteries[J]. Nanoscale, 2019, 11(38): 17630-17636. |
21 | XU S F, DAI H C, ZHU S L, et al. A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density[J]. eScience, 2021, 1(1): 60-68. |
22 | LIU Z J, ZHENG F F, XIONG W W, et al. Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries[J]. SmartMat, 2021, 2(4): 488-518. |
23 | 肖思, 谢旭佳, 谢雍基, 等. 锂离子电池硅/石墨烯负极材料的电化学性能[J]. 硅酸盐学报, 2019, 47(9): 1327-1334. |
XIAO S, XIE X J, XIE Y J, et al. Electrochemical performance of silicon/graphene nanocomposites anode materials for lithium-ion batteries[J]. Journal of the Chinese Ceramic Society, 2019, 47(9): 1327-1334. | |
24 | LIU W P, XU H R, QIN H Q, et al. Rapid coating of asphalt to prepare carbon-encapsulated composites of nano-silicon and graphite for lithium battery anodes[J]. Journal of Materials Science, 2020, 55(10): 4382-4394. |
25 | 曾子元, 王畅, 万伟华, 等. 复合导电剂对锂离子电池性能的影响[J]. 电池, 2020, 50(3): 245-248. |
ZENG Z Y, WANG C, WAN W H, et al. Effects of mixture conductive agents on the performance of Li-ion battery[J]. Battery Bimonthly, 2020, 50(3): 245-248. | |
26 | CHUNG W Y, BRAHMA S, HOU S C, et al. Petroleum waste hydrocarbon resin as a carbon source modified on a Si composite as a superior anode material in lithium ion batteries[J]. Materials Chemistry and Physics, 2021, 259: doi: 10.1016/j.matchemphys.2020.124011. |
27 | NIE Z W, LIU Y J, YANG L Y, et al. Construction and application of materials knowledge graph based on author disambiguation: Revisiting the evolution of LiFePO4[J]. Advanced Energy Materials, 2021, 11(16): doi: 10.1002/aenm.202003580. |
28 | REN S S, DUAN X D, GE F Y, et al. Novel MOF-derived hollow CoFe alloy coupled with N-doped Ketjen Black as boosted bifunctional oxygen catalysts for Zn-air batteries[J]. Chemical Engineering Journal, 2022, 427: doi: 10.1016/j.cej.2021.131614. |
29 | NARAYANAN A, MUGELE F, DUITS M H G. Mechanical history dependence in carbon black suspensions for flow batteries: A rheo-impedance study[J]. Langmuir, 2017, 33(7): 1629-1638. |
30 | 江浩, 李春忠. 表面化学反应控制制备多级结构电极材料及性能[J]. 化工学报, 2015, 66(8): 2872-2877. |
JIANG H, LI C Z. Surface reaction controlled preparation of hierarchical structure nanomaterials and their electrochemical performances[J]. CIESC Journal, 2015, 66(8): 2872-2877. | |
31 | 王其钰, 褚赓, 张杰男, 等. 锂离子扣式电池的组装, 充放电测量和数据分析[J]. 储能科学与技术, 2018, 7(2): 327-344. |
WANG Q Y, CHU G, ZHANG J N, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell[J]. Energy Storage Science and Technology, 2018, 7(2): 327-344. | |
32 | 李仲明, 李斌, 冯东, 等. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(2): 513-527. |
LI Z M, LI B, FENG D, et al. Research progress of cathode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 513-527. | |
33 | ZHANG J, LIU X F, WANG J, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochimica Acta, 2016, 187: 134-142. |
34 | CHEN T Q, PAN L K, LIU X J, et al. A comparative study on electrochemical performances of the electrodes with different nanocarbon conductive additives for lithium ion batteries[J]. Materials Chemistry and Physics, 2013, 142(1): 345-349. |
35 | 高坡, 张彦林, 颜健. 石墨烯/碳纳米管复合导电剂对LiNi1/3Co1/3Mn1/3O2的影响[J]. 电池, 2017, 47(6): 339-342. |
GAO P, ZHANG Y L, YAN J. Effects of graphene/carbon nanotube composite conductive agent to LiNi1/3Co1/3Mn1/3O2[J]. Battery Bimonthly, 2017, 47(6): 339-342. |
[1] | Jingjing RUAN, Fuyuan LIU, Shenshen LI, Guihong GAO, Yanxia LIU. Preparation of rod-like silicon-based material by carbon reduction and its application in lithium slurry batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1051-1058. |
[2] | Jinmei DONG, Qiyuan LIU, Fang WU, Lirui JIA, Jing WEN, Chenggong CHANG, Weixin ZHENG, Xueying XIAO. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials [J]. Energy Storage Science and Technology, 2023, 12(2): 349-356. |
[3] | Boya ZHANG, Bohong LIU, Yuanhang LI, Xin LIU, Qianfeng CHEN, Sanying HOU. Binary oxide modified catalyst preparation and self-humidifying performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2013-2019. |
[4] | Jian YIN, Jiling DONG, Hao DING, Fang LI. Research progress of transition metal oxide anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001. |
[5] | HAO Maosen, LIU Hongzhi, WANG Wantong, LYU Jing. Research progress of thermochemical heat storage materials of hydrated salts [J]. Energy Storage Science and Technology, 2020, 9(3): 791-796. |
[6] | YU Jiapeng, CHENG Xiaomin, LI Yuanyuan, LI Bei, XU Hong. Molecular dynamics simulation of thermodynamic properties of Mg-Cu alloys [J]. Energy Storage Science and Technology, 2019, 8(4): 772-777. |
[7] | ZHANG Bin1,2, CHEN Yongchong1, ZHANG Yanping1, FENG Caimei1,2, LIU Dandan1, HE Yingyuan1,2. The international patent technology analysis on lithium slurry battery#br# [J]. Energy Storage Science and Technology, 2017, 6(5): 1000-1007. |
[8] | XU Yangyang, LI Quanguo, LIANG Chengdu, LIN Zhan. Research progress of solid electrolytes [J]. Energy Storage Science and Technology, 2016, 5(5): 649-658. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||