Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 963-970.doi: 10.19799/j.cnki.2095-4239.2023.0705
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Qiquan ZENG1(), Maji LUO2(), Yinlong YANG2, Qingze HUANG2
Received:
2023-10-11
Revised:
2023-11-19
Online:
2024-03-28
Published:
2024-03-28
Contact:
Maji LUO
E-mail:zengqiquan@163.com;mjluo@whut.edu.cn
CLC Number:
Qiquan ZENG, Maji LUO, Yinlong YANG, Qingze HUANG. Life prediction of fuel cells based on the LSTM-UPF hybrid method[J]. Energy Storage Science and Technology, 2024, 13(3): 963-970.
1 | 刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望[J]. 中国工程科学, 2021, 23(4): 162-171. |
LIU Y D, GUO H X, OUYANG X P. Development status and future prospects of hydrogen fuel cell technology[J]. Strategic Study of CAE, 2021, 23(4): 162-171. | |
2 | FAN L X, TU Z K, CHAN S H. Recent development of hydrogen and fuel cell technologies: A review[J]. Energy Reports, 2021, 7: 8421-8446. |
3 | YUE M L, JEMEI S, ZERHOUNI N, et al. Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives[J]. Renewable Energy, 2021, 179: 2277-2294. |
4 | HUA Z G, ZHENG Z X, PAHON E, et al. A review on lifetime prediction of proton exchange membrane fuel cells system[J]. Journal of Power Sources, 2022, 529: 231256. |
5 | LIN X F, HU Y Y. State of health estimation for proton exchange membrane fuel cell using strong tracking filter[C]//2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). Zhanjiang, China. IEEE, 2020: 379-383. |
6 | LIU J W, LI Q, CHEN W R, et al. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5470-5480. |
7 | LI H L, CHEN Q H, ZHANG L Y, et al. Degradation prediction of proton exchange membrane fuel cell based on the multi-inputs Bi-directional long short-term memory[J]. Applied Energy, 2023, 344: 121294. |
8 | ZHANG F, WANG B W, GONG Z C, et al. Short-term performance degradation prediction of proton exchange membrane fuel cell based on discrete wavelet transform and Gaussian process regression[J]. Next Energy, 2023, 1(3): 100052. |
9 | SUN X L, XIE M K, FU J Q, et al. An improved neural network model for predicting the remaining useful life of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(65): 25499-25511. |
10 | JOUIN M, GOURIVEAU R, HISSEL D, et al. Prognostics of PEM fuel cell in a particle filtering framework[J]. International Journal of Hydrogen Energy, 2014, 39(1): 481-494. |
11 | CHEN J Y, ZHOU D, LYU C, et al. A novel health indicator for PEMFC state of health estimation and remaining useful life prediction[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20230-20238. |
12 | WANG Y P, WU K C, ZHAO H H, et al. Degradation prediction of proton exchange membrane fuel cell stack using semi-empirical and data-driven methods[J]. Energy and AI, 2023, 11: 100205. |
13 | TIAN Q C, CHEN H T, DING S, et al. Remaining useful life prediction method of PEM fuel cells based on a hybrid model[J]. Electronics, 2023, 12(18): 3883. |
14 | ZHANG Z D, WANG Y X, HE H W, et al. A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell[J]. Applied Energy, 2021, 304: 117841. |
15 | 谢滟馨, 王顺利, 史卫豪, 等. 一种用于高保真锂电池SOC估计的无迹粒子滤波新方法[J]. 储能科学与技术, 2021, 10(2): 722-731. |
XIE Y X, WANG S L, SHI W H, et al. A new method of unscented particle filter for high-fidelity lithium-ion battery SOC estimation[J]. Energy Storage Science and Technology, 2021, 10(2): 722-731. | |
16 | FCLAB Research. IEEE PHM 2014 DATA CHALLENGE[OL]. Belfort, France: 2014. [2020-12-20]. http://eng.fclab.fr/ieee-phm-2014-data-challenge/. |
17 | 王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245. |
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. | |
18 | SRINIVASAN D. Energy demand prediction using GMDH networks[J]. Neurocomputing, 2008, 72(1/2/3): 625-629. |
19 | 黄庆泽. 混合驱动的质子交换膜燃料电池寿命预测方法研究[D]. 武汉: 武汉理工大学, 2022. |
HUANG Q Z. Study on hybrid driven life prediction methods of proton exchange membrane fuel cell[D]. Wuhan: Wuhan University of Technology, 2022. | |
20 | BENAGGOUNE K, YUE M L, JEMEI S, et al. A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell[J]. Applied Energy, 2022, 313: 118835. |
[1] | Jing BAI, Huifang FAN, Siqi CUI, Chuang XU, Yi ZHANG, Size GUAN, Hanfei YANG, Yifei JIA, Shuwei GENG, Huifan ZHENG. Experimental study on heat dissipation performance of automotive fuel cells [J]. Energy Storage Science and Technology, 2024, 13(2): 390-395. |
[2] | Yongshuai YU, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Effect of cathode relative humidity on membrane water content and performance of PEMFC [J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764. |
[3] | Linze LI, Xiangwen ZHANG. SOH estimation for lithium-ion batteries based on combination of frequency impedance characteristics [J]. Energy Storage Science and Technology, 2023, 12(5): 1705-1712. |
[4] | Pengkai WANG, Xinyan ZHANG, Guanghao ZHANG. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model [J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. |
[5] | Xing WANG, Jun SUN, Ningfang CHEN, Li YAN. Modeling of a proton exchange membrane fuel cell cooling system based on the Simscape temperature control strategy [J]. Energy Storage Science and Technology, 2023, 12(3): 857-869. |
[6] | Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. |
[7] | Keke LIU, Yongfeng LIU, Pucheng PEI, Shengzhuo YAO, Lu ZHANG. Design of a novel flow channel structure of PEMFC based on Koch snowflake [J]. Energy Storage Science and Technology, 2023, 12(11): 3361-3368. |
[8] | Xinghai SONG, Xiaoqian ZHANG, Huishi LIANG, Zinan SHI, Miangang LI, Kui ZHOU, Xiaoxu GONG. Predicting the remaining service life of lithium batteries based on the SDAE-transformer-ECA network [J]. Energy Storage Science and Technology, 2023, 12(10): 3181-3190. |
[9] | Qiantong LIU, Yuanxiu XING. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model [J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. |
[10] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[11] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[12] | Haoyi XIAO, Xiaoxia HE, Jiajia LIANG, Chunli LI. A lithium battery life-prediction method based on mode decomposition and machine learning [J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009. |
[13] | Yongsheng SHI, Jin LI, Jiarui REN, Kai ZHANG. Prediction of residual service life of lithium-ion battery using WOA-XGBoost [J]. Energy Storage Science and Technology, 2022, 11(10): 3354-3363. |
[14] | Zhihao LI, Hao PENG, Yaqin CHEN. Neural network prediction model for temperature distribution of proton exchange membrane fuel cell membrane electrode assembly [J]. Energy Storage Science and Technology, 2021, 10(6): 2053-2059. |
[15] | Jing ZHANG, Yan LU, Sheng LI, Guangcai XIE, Zhongmin WAN. Modeling and simulation of domestic fuel cell cogenerated heat and power system based on fuzzy PID control [J]. Energy Storage Science and Technology, 2021, 10(3): 1117-1126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||