Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3999-4009.doi: 10.19799/j.cnki.2095-4239.2022.0341
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Haoyi XIAO(), Xiaoxia HE(), Jiajia LIANG, Chunli LI
Received:
2022-06-20
Revised:
2022-06-27
Online:
2022-12-05
Published:
2022-12-29
Contact:
Xiaoxia HE
E-mail:2218403061@qq.com;hexiaoxia@wust.edu.cn
CLC Number:
Haoyi XIAO, Xiaoxia HE, Jiajia LIANG, Chunli LI. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009.
Table 2
B0005 prediction and evaluation index results"
电池编号 | 神经网络模型 | 模型方法 | 运行时间/s | MAE | RMSE | MAPE | RE |
---|---|---|---|---|---|---|---|
B0005 | LSTM | LSTM | 18.77 | 0.058592 | 0.070959 | 0.043809 | 0.040650 |
CEEMDAN-LSTM | 70.65 | 0.043490 | 0.057525 | 0.026992 | 0.026260 | ||
CEEMDAN-RF-LSTM | 74.93 | 0.040182 | 0.053559 | 0.024962 | 0.024390 | ||
RNN | RNN | 38.07 | 0.280588 | 0.360674 | 0.180698 | 0.335772 | |
CEEMDAN-RNN | 87.56 | 0.245580 | 0.332067 | 0.169977 | 0.390244 | ||
CEEMDAN-RF-RNN | 91.95 | 0.071269 | 0.087691 | 0.047033 | 0.195122 | ||
GRU | GRU | 17.84 | 0.060329 | 0.072215 | 0.044820 | 0.073171 | |
CEEMDAN-GRU | 61.86 | 0.045586 | 0.060776 | 0.028049 | 0.028130 | ||
CEEMDAN-RF-GRU | 66.39 | 0.041444 | 0.055729 | 0.025512 | 0.024390 | ||
CNN | CNN | 13.09 | 0.068268 | 0.081806 | 0.039025 | 0.440650 | |
CEEMDAN-CNN | 47.96 | 0.062904 | 0.073718 | 0.040348 | 0.304553 | ||
CEEMDAN-RF-CNN | 52.11 | 0.062832 | 0.073593 | 0.040437 | 0.280813 | ||
MLP | MLP | 13.02 | 0.070968 | 0.081720 | 0.047639 | 0.325203 | |
CEEMDAN-MLP | 45.63 | 0.068850 | 0.080262 | 0.045182 | 0.329496 | ||
CEEMDAN-RF-MLP | 49.97 | 0.068734 | 0.080241 | 0.044737 | 0.305152 |
Table 3
B0006 prediction and evaluation index results"
电池编号 | 神经网络模型 | 模型方法 | 运行时间/s | MAE | RMSE | MAPE | RE |
---|---|---|---|---|---|---|---|
B0006 | LSTM | LSTM | 20.72 | 0.054751 | 0.069080 | 0.037688 | 0.068037 |
CEEMDAN-LSTM | 64.83 | 0.044735 | 0.058687 | 0.028165 | 0.056075 | ||
CEEMDAN-RF-LSTM | 69.37 | 0.039161 | 0.049791 | 0.024893 | 0.054112 | ||
RNN | RNN | 38.66 | 0.207933 | 0.325623 | 0.177686 | 0.439252 | |
CEEMDAN-RNN | 87.25 | 0.249714 | 0.345865 | 0.180759 | 0.355140 | ||
CEEMDAN-RF-RNN | 91.36 | 0.086660 | 0.110239 | 0.061186 | 0.196262 | ||
GRU | GRU | 17.84 | 0.064288 | 0.082282 | 0.044646 | 0.046729 | |
CEEMDAN-GRU | 58.64 | 0.042328 | 0.052737 | 0.027216 | 0.065421 | ||
CEEMDAN-RF-GRU | 62.91 | 0.041394 | 0.051566 | 0.026716 | 0.065421 | ||
CNN | CNN | 13.19 | 0.083262 | 0.095125 | 0.054467 | 0.233645 | |
CEEMDAN-CNN | 47.86 | 0.046205 | 0.062880 | 0.030333 | 0.029597 | ||
CEEMDAN-RF-CNN | 51.37 | 0.041894 | 0.054645 | 0.027848 | 0.028037 | ||
MLP | MLP | 13.06 | 0.085937 | 0.096994 | 0.064232 | 0.088037 | |
CEEMDAN-MLP | 39.78 | 0.051744 | 0.066709 | 0.034459 | 0.084112 | ||
CEEMDAN-RF-MLP | 44.08 | 0.048342 | 0.063234 | 0.032276 | 0.037383 |
Table 4
Prediction and evaluation index results of the four groups of batteries"
电池编号 | 模型方法 | MAE | RMSE | MAPE | RE |
---|---|---|---|---|---|
B0005 | CEEMDAN-RF-SED-LSTM | 0.025569 | 0.031899 | 0.016515 | 0.018130 |
CEEMDAN-RF-SED-GRU | 0.037491 | 0.044218 | 0.024056 | 0.089431 | |
B0006 | CEEMDAN-RF-SED-LSTM | 0.032727 | 0.039157 | 0.021635 | 0.056075 |
CEEMDAN-RF-SED-GRU | 0.041408 | 0.049697 | 0.028029 | 0.093458 | |
B0007 | CEEMDAN-RF-SED-LSTM | 0.021852 | 0.026331 | 0.013319 | 0.059524 |
CEEMDAN-RF-SED-GRU | 0.028275 | 0.036218 | 0.017499 | 0.061905 | |
B0018 | CEEMDAN-RF-SED-LSTM | 0.025835 | 0.031901 | 0.016380 | 0.094737 |
CEEMDAN-RF-SED-GRU | 0.030818 | 0.040062 | 0.019301 | 0.081053 |
1 | WANG S L, JIN S Y, BAI D K, et al. A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries[J]. Energy Reports, 2021, 7: 5562-5574. |
2 | ZRAIBI B, MANSOURI M, LOUKILI S E. Comparing deep learning methods to predict the remaining useful life of lithium-ion batteries[J]. Materials Today: Proceedings, 2022, 62: 6298-6304. |
3 | 胡振恺, 雷博, 李勇琦, 等. 储能用锂离子电池安全性测试与评估方法比较[J]. 储能科学与技术, 2022, 11(5): 1650-1656. |
HU Z K, LEI B, LI Y Q, et al. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. | |
4 | 李建林, 肖珩. 锂离子电池建模现状综述[J]. 储能科学与技术, 2022, 11(2): 697-703. |
LI J L, XIAO H. Review on modeling of lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(2): 697-703. | |
5 | 李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384. |
LI L B, LI S J, LI J, et al. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. | |
6 | 姚芳, 张楠, 黄凯. 锂离子电池状态估算与寿命预测综述[J]. 电源学报, 2020, 18(3): 175-183. |
YAO F, ZHANG N, HUANG K. Review of state estimation and life prediction for lithiumion batteries[J]. Journal of Power Supply, 2020, 18(3): 175-183. | |
7 | 韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438. |
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438. | |
8 | 赵显赫, 耿光超, 林达, 等. 基于数据驱动的锂离子电池健康状态评估综述[J]. 浙江电力, 2021, 40(7): 65-73. |
ZHAO X H, GENG G C, LIN D, et al. Review of data-driven state of health estimation for lithium-ion battery[J]. Zhejiang Electric Power, 2021, 40(7): 65-73. | |
9 | 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55(8): 73-86, 95. |
LI C, WANG C H, WANG G, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55(8): 73-86, 95. | |
10 | 李建林, 王哲, 许德智, 等. 基于数据驱动法的锂离子电池寿命预测关键技术综述[J]. 电器与能效管理技术, 2021(9): 10-18. |
LI J L, WANG Z, XU D Z, et al. Overview of key technologies for lithium-ion battery life prediction based on data-driven methods[J]. Electrical & Energy Management Technology, 2021(9): 10-18. | |
11 | 张若可, 郭永芳, 余湘媛, 等.基于数据驱动的锂离子电池RUL预测综述[J/OL]. 电源学报, 2021[2022-03-02].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DYXB20210824003&uniplatform=NZKPT&v=wYAa586U8l2FcQbuNn tpFqahCvLt EGyCU5ZM5Yf0wRMkJw67wWLkq3r54EysBEvW. |
ZHANG R K, GUO Y F, YU X Y, et al. A review of data-driven Lithium-ion battery RUL predictions[J/OL]. Journal of Power Sources,2021[2022-03-02].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DYXB202108 24003&uniplatform=NZKPT&v=wYAa586U8l2FcQbuNntpFqahCvLt EGyCU5ZM5Yf0wRMkJw67wWLkq3r54EysBEvW. | |
12 | XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811-820. |
13 | WANG J W, DENG Z W, YU T, et al. State of health estimation based on modified Gaussian process regression for lithium-ion batteries[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104512. |
14 | 周亚鹏, 郭彪, 王一纯. 基于PF-ARIMA的锂离子电池剩余寿命预测[J]. 电池工业, 2022, 26(1): 19-22. |
ZHOU Y P, GUO B, WANG Y C. A remaining useful life prediction method for lithium-ion battery based on PF-ARIMA[J]. Chinese Battery Industry, 2022, 26(1): 19-22. | |
15 | 史永胜, 李锦, 任嘉睿, 等. 基于WOA-XGBoost的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2022, 11(10): 3354-3363. |
SHI Y S, LI J, REN J R, et al. Prediction of residual service life of lithium-ion battery using WOA-XGBoost[J]. Energy Storage Science and Technology, 2022, 11(10): 3354-3363. | |
16 | CHEN Z W, SHI N, JI Y F, et al. Lithium-ion batteries remaining useful life prediction based on BLS-RVM[J]. Energy, 2021, 234: doi: 10.1016/j.energy.2021.121269. |
17 | 韦荣阳, 毛阗, 高晗, 等. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599. |
WEI R Y, MAO T, GAO H, et al. Health state estimation of lithium ion battery based on TWP-SVR[J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. | |
18 | ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]//2017 IEEE International Conference on Prognostics and Health Management. Dallas, TX, USA. IEEE: 88-95. |
19 | 张少凤, 张清勇, 杨叶森, 等. 基于滑动窗口和LSTM神经网络的锂离子电池建模方法[J]. 储能科学与技术, 2022, 11(1): 228-239. |
ZHANG S F, ZHANG Q Y, YANG Y S, et al. Lithium-ion battery model based on sliding window and long short term memory neural network[J]. Energy Storage Science and Technology, 2022, 11(1): 228-239. | |
20 | SHI Z Y, CHEHADE A. A dual-LSTM framework combining change point detection and remaining useful life prediction[J]. Reliability Engineering & System Safety, 2021, 205: doi: 10.1016/j.ress.2020.107257. |
21 | XIAO B, LIU Y G, XIAO B. Accurate state-of-charge estimation approach for lithium-ion batteries by gated recurrent unit with ensemble optimizer[J]. IEEE Access, 2019, 7: 54192-54202. |
22 | WU Y, LI W, WANG Y R, et al. Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter[J]. IEEE Access, 7: 54843-54854. |
23 | 姚远, 陈志聪, 吴丽君, 等. 采用GRU-MC混合算法的锂离子电池RUL预测[J]. 福州大学学报(自然科学版), 2022, 50(2): 169-174. |
YAO Y, CHEN Z C, WU L J, et al. RUL prediction of lithium-ion battery using GRU-MC hybrid algorithm[J]. Journal of Fuzhou University (Natural Science Edition), 2022, 50(2): 169-174. | |
24 | 陈赐阳, 陈德旺. 基于CNN-LSTM的锂电池剩余寿命(RUL)间接预测研究[J]. 电源技术, 2021, 45(5): 589-594. |
CHEN C Y, CHEN D W. Research on indirect prediction of lithium battery RUL based on CNN-LSTM[J]. Chinese Journal of Power Sources, 2021, 45(5): 589-594. | |
25 | 王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245. |
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. | |
26 | 梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219. |
LIANG H F, YUAN P, GAO Y J. Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric Power Automation Equipment, 2021, 41(10): 213-219. | |
27 | CHEN D Q, HONG W C, ZHOU X Z. Transformer network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Access, 10: 19621-19628. |
28 | 陈彦余, 夏向阳, 周文钊, 等. 基于EMD-ARMA的锂离子电池剩余寿命预测[J]. 电力学报, 2021, 36(1): 43-50, 59. |
CHEN Y Y, XIA X Y, ZHOU W Z, et al. Prediction of the lithium-ion battery remaining useful life based on EMD-ARMA[J]. Journal of Electric Power, 2021, 36(1): 43-50, 59. | |
29 | 李泱, 张营, 邹博雨, 等. 基于EMD-GPR的锂离子电池剩余寿命预测方法研究[J]. 农业装备与车辆工程, 2021, 59(11): 60-63. |
LI Y, ZHANG Y, ZOU B Y, et al. Research on residual life prediction method of lithium ion battery based on EMD-GPR[J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(11): 60-63. | |
30 | CHEN J C, CHEN T L, LIU W J, et al. Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery[J]. Advanced Engineering Informatics, 2021, 50: doi: 10.1016/j.aei.2021.101405. |
31 | CHENG G, WANG X Z, HE Y R. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network[J]. Energy, 2021, 232: doi: 10.1016/j.energy.2021.121022. |
32 | 赵沁峰,蔡艳平,王新军.锂电池在不同放电区间下的剩余寿命预测[J/OL].中国测试,2022[2022-06-20]. http://kns.cnki.net/kcms/detail/51.1714.TB.20211201.1038.006.html. |
ZHAO Q F, CAI Y P, WANG X J. Prediction of the remaining life of lithium batteries in different discharge intervals[J/OL]. Tested in China,2022[2022-06-20].http://kns.cnki.net/kcms/detail/51.1714.TB.2021 1201.1038.006.html. | |
33 | 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. |
HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. | |
34 | ZHANG Y, PENG Z, GUAN Y, et al. Prognostics of battery cycle life in the early-cycle stage based on hybrid model[J]. Energy, 2021, 221: doi: 10.1016/j.energy.2021.119901. |
35 | TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011: 4144-4147. |
36 | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
[1] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[2] | ping ZHUO, Yanli ZHU, Chuang QI, Congjie WANG, Fei GAO. Combustion and explosion characteristics of lithium-ion battery pack under overcharge [J]. Energy Storage Science and Technology, 2022, 11(8): 2471-2479. |
[3] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[4] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[5] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[6] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[7] | Zheng ZHENG, Xiaoshuai WANG, Bin LI, Tao HUANG, Peike LI. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers [J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. |
[8] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[9] | Mengmeng GENG, Maosong FAN, Kai YANG, Guangjin ZHAO, Zhen TAN, Fei GAO, Mingjie ZHANG. Fast estimation method for state-of-health of retired batteries based on electrochemical impedance spectroscopy and neural network [J]. Energy Storage Science and Technology, 2022, 11(2): 673-678. |
[10] | Xudong LI, Xiangwen ZHANG. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model [J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021. |
[11] | Kaibo ZHANG, Kaili JIA, Xiaoming XU, Tao ZENG, Youbao XUE, Liu WAN, Zongliang ZHAO. Effect of carbon-coated aluminum foil on high energy density LiFePO4 power battery [J]. Energy Storage Science and Technology, 2022, 11(12): 3741-3747. |
[12] | Li WEI, Xuelin HUANG, Wanting ZHANG, Xintong BAI. A temperature monitoring method of supercapacitor module based on a small number of temperature sensors [J]. Energy Storage Science and Technology, 2022, 11(11): 3631-3640. |
[13] | Yongsheng SHI, Jin LI, Jiarui REN, Kai ZHANG. Prediction of residual service life of lithium-ion battery using WOA-XGBoost [J]. Energy Storage Science and Technology, 2022, 11(10): 3354-3363. |
[14] | Shaofeng ZHANG, Qingyong ZHANG, Yesen YANG, Yixin SU, Binyu XIONG. Lithium-ion battery model based on sliding window and long short term memory neural network [J]. Energy Storage Science and Technology, 2022, 11(1): 228-239. |
[15] | Shuai WANG, Hongyan MA, Jiaming DOU, Yingda ZHANG, Shengyan LI, Lujin HU. Estimation of lithium-ion battery state of charge based on UGOA-BP [J]. Energy Storage Science and Technology, 2022, 11(1): 258-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||