Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 228-239.doi: 10.19799/j.cnki.2095-4239.2021.0373
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Shaofeng ZHANG1, Qingyong ZHANG1(), Yesen YANG2, Yixin SU1, Binyu XIONG1
Received:
2021-07-26
Revised:
2021-08-19
Online:
2022-01-05
Published:
2022-01-10
Contact:
Qingyong ZHANG
E-mail:qyzhang@whut.edu.cn
CLC Number:
Shaofeng ZHANG, Qingyong ZHANG, Yesen YANG, Yixin SU, Binyu XIONG. Lithium-ion battery model based on sliding window and long short term memory neural network[J]. Energy Storage Science and Technology, 2022, 11(1): 228-239.
Table 4
Mean square error of each step after three training methods"
训练方法 | Step1 | Step2 | Step3 | Step4 | Step5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 电压 | SOC | 电压 | SOC | 电压 | SOC | 电压 | SOC | 电压 | |||||
离线 | 32.1×10-4 | 14×10-4 | 25.1×10-4 | 14.2×10-4 | 31.4×10-4 | 14.4×10-4 | 28.6×10-4 | 14.5×10-4 | 30×10-4 | 14.7×10-4 | ||||
在线 | 8.95×10-4 | 22×10-4 | 9.61×10-4 | 22.1×10-4 | 8.54×10-4 | 22.1×10-4 | 9.22×10-4 | 22.2×10-4 | 9.31×10-4 | 22.5×10-4 | ||||
离线+在线 | 1.71×10-4 | 12.3×10-4 | 1.32×10-4 | 12.3×10-4 | 1.31×10-4 | 12.4×10-4 | 1.50×10-4 | 12.4×10-4 | 1.21×10-4 | 12.7×10-4 |
1 | ZHAO E W, LIU T, JÓNSSON E, et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries[J]. Nature, 2020, 579(7798): 224-228. |
2 | 范兴明, 王超, 张鑫, 等. 基于增量学习相关向量机的锂离子电池SOC预测方法[J]. 电工技术学报, 2019, 34(13): 2700-2708. |
FAN X M, WANG C, ZHANG X, et al. A prediction method of Li-ion batteries SOC based on incremental learning relevance vector machine[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2700-2708. | |
3 | 陈翌, 白云飞, 何瑛. 数据驱动的锂电池健康状态估算方法比较[J]. 储能科学与技术, 2019, 8(6): 1204-1210. |
CHEN Y, BAI Y F, HE Y. Comparison of data-driven lithium battery state of health estimation methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1204-1210. | |
4 | 黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(S1): 378-387. |
HUANG K, GUO Y F, LI Z G. High precision parameter identification of lithium-ion battery model based on feedback particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 378-387. | |
5 | 张卓识. 锂离子电池建模与故障预测方法研究[D]. 大连: 大连海事大学, 2016. |
ZHANG Z S. Study of lithium-ion battery modeling and prognostics method[D]. Dalian: Dalian Maritime University, 2016. | |
6 | 凡旭国. 锂离子电池组等效电路建模及SOC估算的研究[D]. 绵阳: 西南科技大学, 2017. |
FAN X G. Research on equivalent circuit modeling and state of charge estimation of lithium-ion battery[D]. Mianyang: Southwest University of Science and Technology, 2017. | |
7 | 杨帆, 乔艳龙, 甘德刚, 等. 不同充电模式对锂离子电池极化特性影响[J]. 电工技术学报, 2017, 32(12): 171-178. |
YANG F, QIAO Y L, GAN D G, et al. Lithium-ion battery polarization characteristics at different charging modes[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 171-178. | |
8 | 郑志坤, 赵光金, 金阳, 等. 基于库仑效率的退役锂离子动力电池储能梯次利用筛选[J]. 电工技术学报, 2019, 34(S1): 388-395. |
ZHENG Z K, ZHAO G J, JIN Y, et al. The reutilization screening of retired electric vehicle lithium-ion battery based on coulombic efficiency[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 388-395. | |
9 | 郑继利. 基于机理模型的锂离子电池电化学行为及优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
ZHENG J L. Research on electrochemical performance and optimization of lithium ion batterries based on the mechanism model[D]. Harbin: Harbin Institute of Technology, 2018. | |
10 | LUZI M, PASCHERO M, RIZZI A, et al. A novel neural networks ensemble approach for modeling electrochemical cells[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(2): 343-354. |
11 | HUSSEIN A A. Adaptive artificial neural network-based models for instantaneous power estimation enhancement in electric vehicles' Li-ion batteries[J]. IEEE Transactions on Industry Applications, 2019, 55(1): 840-849. |
12 | CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255. |
13 | DAI H D, ZHAO G C, LIN M Q, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7706-7716. |
14 | LI W H, JIAO Z P, DU L, et al. An indirect RUL prognosis for lithium-ion battery under vibration stress using Elman neural network[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12270-12276. |
15 | SHEN S, SADOUGHI M, CHEN X Y, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019, 25: doi: 10.1016/j.est.2019. 100817. |
16 | ZHAO R X, KOLLMEYER P J, LORENZ R D, et al. A compact methodology via a recurrent neural network for accurate equivalent circuit type modeling of lithium-ion batteries[J]. IEEE Transactions on Industry Applications, 2019, 55(2): 1922-1931. |
17 | 李超然, 肖飞, 樊亚翔. 基于循环神经网络的锂电池SOC估算方法[J]. 海军工程大学学报, 2019, 31(6): 107-112. |
LI C R, XIAO F, FAN Y X. Approach to lithium battery SOC estimation based on recurrent neural network[J]. Journal of Naval University of Engineering, 2019, 31(6): 107-112. | |
18 | WU Z Q, SHANG M Y, SHEN D D, et al. SOC estimation for batteries using MS-AUKF and neural network[J]. Journal of Renewable and Sustainable Energy, 2019, 11(2): doi: 10.1063/1.5064479. |
19 | TONG S J, LACAP J H, PARK J W. Battery state of charge estimation using a load-classifying neural network[J]. Journal of Energy Storage, 2016, 7: 236-243. |
20 | BIAN C, HE H L, YANG S K, et al. State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227558. |
21 | ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. |
22 | LIU V T, SUN Y K, LU H Y, et al. State of charge estimation for lithium-ion battery using recurrent neural network[C]//2018 IEEE International Conference on Advanced Manufacturing (ICAM), 2018: 376-379. |
23 | 赵明愿. 新型时间序列复杂网络建网及在风序列分析中的应用研究[D]. 天津: 天津大学, 2017. |
ZHAO M Y. Time series analysis based on complex network and application research in wind records[D]. Tianjin: Tianjin University, 2017. | |
24 | 刘琴, 王恺乐, 饶卫雄. 不等长时间序列滑窗STS距离聚类算法[J]. 计算机科学与探索, 2015, 9(11): 1301-1313. |
LIU Q, WANG K L, RAO W X. Non-equal time series clustering algorithm with sliding window STS distance[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(11): 1301-1313. | |
25 | 黄喆. 基于RBF神经网络的上证指数预测研究[D]. 合肥: 中国科学技术大学, 2009. |
HUANG Z. Prediction of Shanghai stock exchange composite index based on RBF neural network[D]. Hefei: University of Science and Technology of China, 2009. | |
26 | 艾虎, 李菲. 基于改进的长短期记忆神经网络方言辨识模型[J]. 科学技术与工程, 2019, 19(2): 163-169. |
AI H, LI F. Dialect identification model based on improved long short-term memory neural network[J]. Science Technology and Engineering, 2019, 19(2): 163-169. |
[1] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[2] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[3] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[4] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[5] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[6] | Guangfu XU, Miao JIANG, Wanchun WANG, Yang WEI, Wei HOU. Short circuit fault analysis and protection strategies research of large storage batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2222-2232. |
[7] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[8] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[9] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[10] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[11] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[12] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[13] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[14] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[15] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||