Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 2995-3005.doi: 10.19799/j.cnki.2095-4239.2024.0465
Previous Articles Next Articles
Yuan CHEN(), Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU
Received:
2024-05-28
Revised:
2024-07-04
Online:
2024-09-28
Published:
2024-09-20
Contact:
Yuan CHEN
E-mail:cumtjiangsucy@126.com
CLC Number:
Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model[J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005.
Table 1
Comparison of SOH errors with and without feature polynomials"
Method | B0005 | B0006 | B0007 | B0018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | |
Poly-CNN-Transformer | 0.00711 | 0.00535 | 0.00015 | 0.00796 | 0.00648 | 0.00011 | 0.0081 | 0.0056 | 0.0001 | 0.0075 | 0.0056 | 0.0001 |
CNN-Transformer | 0.01160 | 0.00875 | 0.00021 | 0.01601 | 0.01294 | 0.00040 | 0.0085 | 0.0059 | 0.0001 | 0.0091 | 0.0068 | 0.0002 |
Table 2
Comparison of SOH errors of different algorithms"
Method | B0005 | B0006 | B0007 | B0018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | |
Poly-CNN-Transformer | 0.0071 | 0.0053 | 0.0001 | 0.0079 | 0.0064 | 0.0001 | 0.0081 | 0.0056 | 0.0001 | 0.0075 | 0.0056 | 0.0001 |
Poly-Transformer | 0.0072 | 0.0054 | 0.0001 | 0.0114 | 0.0093 | 0.0002 | 0.0136 | 0.0087 | 0.0005 | 0.0085 | 0.0064 | 0.0001 |
Poly-LSTM | 0.0141 | 0.0160 | 0.0003 | 0.0100 | 0.0081 | 0.0001 | 0.0141 | 0.0093 | 0.0005 | 0.0090 | 0.0063 | 0.0001 |
1 | TIAN X, GENG Y, SARKIS J, et al. Features of critical resource trade networks of lithium-ion batteries[J]. Resources Policy, 2021, 73: 102177. DOI: 10.1016/j.resourpol.2021.102177. |
2 | RAUF H, KHALID M, ARSHAD N. Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling[J]. Renewable and Sustainable Energy Reviews, 2022, 156: 111903. DOI: 10.1016/j.rser.2021.111903. |
3 | JIANG K, LIU X L, LOU G F, et al. Parameter sensitivity analysis and cathode structure optimization of a non-aqueous Li-O2 battery model[J]. Journal of Power Sources, 2020, 451: 227821. DOI: 10.1016/j.jpowsour.2020.227821. |
4 | JIANG S D, SONG Z X. A review on the state of health estimation methods of lead-acid batteries[J]. Journal of Power Sources, 2022, 517: 230710. DOI: 10.1016/j.jpowsour.2021.230710. |
5 | HOSSAIN LIPU M S, ANSARI S, MIAH M S, et al. Deep learning enabled state of charge, state of health and remaining useful life estimation for smart battery management system: Methods, implementations, issues and prospects[J]. Journal of Energy Storage, 2022, 55: 105752. DOI: 10.1016/j.est.2022.105752. |
6 | YANG S J, ZHANG C P, JIANG J C, et al. Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications[J]. Journal of Cleaner Production, 2021, 314: 128015. DOI: 10.1016/j.jclepro.2021.128015. |
7 | XIONG R, KIM J, SHEN W X, et al. Key technologies for electric vehicles[J]. Green Energy and Intelligent Transportation, 2022, 1(2): 100041. DOI: 10.1016/j.geits.2022.100041. |
8 | ZHAO J, ZHU Y, ZHANG B, et al. Review of state estimation and remaining useful life prediction methods for lithium–ion batteries[J]. Sustainability, 2023, 15(6): 5014. |
9 | TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: 120813. DOI: 10.1016/j.jclepro.2020.120813. |
10 | 顾菊平, 蒋凌, 张新松, 等. 基于特征提取的锂离子电池健康状态评估及影响因素分析[J]. 电工技术学报, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085. |
GU J P, JIANG L, ZHANG X S, et al. Estimation and influencing factor analysis of lithium-ion batteries state of health based on features extraction[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085. | |
11 | SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346. DOI: 10.1016/j.apenergy.2021.117346. |
12 | TRAN M K, MATHEW M, JANHUNEN S, et al. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters[J]. Journal of Energy Storage, 2021, 43: 103252. DOI: 10.1016/j.est.2021.103252. |
13 | 陈媛,段文献,何怡刚,等.带降噪自编码器的锂离子电池健康状态估计算法[J/OL].电工技术学报,1-17[2024-05-24].https://doi.org/10.19595/j.cnki.1000-6753.tces.231644. |
CHEN Y,DUAN W X,HE Y G, et al. Predicting the state of charge and health of batteries using data-driven machine learning[J/OL]. Nature Machine Intelligence,1-17[2024-05-24].https://doi.org/10.19595/j.cnki.1000-6753.tces.231644. | |
14 | ZHANG M, YANG D F, DU J X, et al. A review of SOH prediction of Li-ion batteries based on data-driven algorithms[J]. Energies, 2023, 16(7): 3167. DOI: 10.3390/en16073167. |
15 | REN Z, DU C Q. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries[J]. Energy Reports, 2023, 9: 2993-3021. DOI: 10.1016/j.egyr.2023.01.108. |
16 | CHEN K, LIAO Q, LIU K, et al. Capacity degradation prediction of lithium-ion battery based on artificial bee colony and multi-kernel support vector regression[J]. Journal of Energy Storage, 2023, 72: 108160. DOI: 10.1016/j.est.2023.108160. |
17 | VAN C N, QUANG D T. Estimation of SoH and internal resistances of lithium ion battery based on LSTM network[J]. International Journal of Electrochemical Science, 2023, 18(6): 100166. DOI: 10.1016/j.ijoes.2023.100166. |
18 | FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101741. DOI: 10.1016/j.est. 2020.101741. |
19 | SUN S, LIN Q B, LI H S, et al. Simultaneous estimation of SOH and SOC of batteries based on SVM[C]//2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES). December 9-12, 2022, Beijing, China. IEEE, 2022: 1934-1938. DOI: 10.1109/SPIES55999.2022.10082477. |
20 | XIAO S, LIU P Y, CHEN K, et al. Battery state of health prediction based on voltage intervals, BP neural network and genetic algorithm[J]. International Journal of Green Energy, 2024, 21(8): 1743-1756. DOI: 10.1080/15435075.2023.2264959. |
21 | WEN L, BO N, YE X C, et al. A novel auto-LSTM-based state of health estimation method for lithium-ion batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(3): 030902. DOI: 10.1115/1.4050100. |
22 | JIA C Y, TIAN Y K, SHI Y H, et al. State of health prediction of lithium-ion batteries based on bidirectional gated recurrent unit and transformer[J]. Energy, 2023, 285: 129401. DOI: 10.1016/j.energy.2023.129401. |
23 | ZHANG Q C, LI X, ZHOU C, et al. State-of-health estimation of batteries in an energy storage system based on the actual operating parameters[J]. Journal of Power Sources, 2021, 506: 230162. DOI: 10.1016/j.jpowsour.2021.230162. |
24 | BIAN X L, WEI Z B, LI W H, et al. State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2226-2236. DOI: 10.1109/TPEL. 2021.3104723. |
25 | GISMERO A, NØRREGAARD K, JOHNSEN B, et al. Electric vehicle battery state of health estimation using Incremental Capacity Analysis[J]. Journal of Energy Storage, 2023, 64: 107110. DOI: 10.1016/j.est.2023.107110. |
26 | WANG Q S, WANG Z P, ZHANG L, et al. A battery capacity estimation framework combining hybrid deep neural network and regional capacity calculation based on real-world operating data[J]. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8499-8508. DOI: 10.1109/TIE.2022.3229350. |
27 | JENU S, HENTUNEN A, HAAVISTO J, et al. State of health estimation of cycle aged large format lithium-ion cells based on partial charging[J]. Journal of Energy Storage, 2022, 46: 103855. DOI: 10.1016/j.est.2021.103855. |
28 | ZHANG Q C, LI X Z, DU Z C, et al. Aging performance characterization and state-of-health assessment of retired lithium-ion battery modules[J]. Journal of Energy Storage, 2021, 40: 102743. DOI: 10.1016/j.est.2021.102743. |
29 | CHEN K, LI J L, LIU K, et al. State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine[J]. Green Energy and Intelligent Transportation, 2024, 3(1): 100151. DOI: 10.1016/j.geits. 2024.100151. |
30 | SUN H L, SUN J R, ZHAO K, et al. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation[J]. Mathematical Problems in Engineering, 2022, 2022: 9645892. DOI: 10.1155/2022/9645892. |
31 | SHE C Q, ZHANG L, WANG Z P, et al. Battery state-of-health estimation based on incremental capacity analysis method: Synthesizing from cell-level test to real-world application[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 214-223. DOI: 10.1109/JESTPE.2021.3112754. |
32 | TIAN J P, XIONG R, SHEN W X. State-of-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10363-10373. DOI: 10.1109/TPEL.2020.2978493. |
33 | PARK S, LEE P, KIM D, et al. A SOH estimation method based on ICA peaks on temperature-robust and aging mechanism analysis under high temperature[C]//2021 IEEE Applied Power Electronics Conference and Exposition (APEC). June 14-17, 2021, Phoenix, AZ, USA. IEEE, 2021: 2646-2649. DOI: 10.1109/APEC42165.2021.9487032. |
34 | HOU X K, GUO X D, YUAN Y P, et al. The state of health prediction of Li-ion batteries based on an improved extreme learning machine[J]. Journal of Energy Storage, 2023, 70: 108044. DOI: 10.1016/j.est.2023.108044. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[5] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[6] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[7] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[8] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[9] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[10] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[11] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[12] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[13] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[14] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
[15] | Shijie LIAO, Ying WEI, Yunhui HUANG, Renzong HU, Henghui XU. 1,3-Difluorobenzene diluent-stabilizing electrode interface for high-performance low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2124-2130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||