Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 4040-4052.doi: 10.19799/j.cnki.2095-4239.2024.0516
• Energy Storage System and Engineering • Previous Articles Next Articles
Shanshan SHI1(), Kai WANG2, Yu ZHANG1, Kaiyu ZHANG1, Kening ZHANG2, Yufei WANG2, Yani WANG2
Received:
2024-06-07
Revised:
2024-07-23
Online:
2024-11-28
Published:
2024-11-27
Contact:
Shanshan SHI
E-mail:evdataanalysis@163.com
CLC Number:
Shanshan SHI, Kai WANG, Yu ZHANG, Kaiyu ZHANG, Kening ZHANG, Yufei WANG, Yani WANG. Collaborative passivity-based control method for hybrid energy storage systems in urban rail transit[J]. Energy Storage Science and Technology, 2024, 13(11): 4040-4052.
Table 5
Comparison of power and state of charge changes of supercapacitor and battery with different control methods"
控制方式 | Psc/kW | Pbat/kW | SOCsc/% | SOCbat/% |
---|---|---|---|---|
传统矢量PI控制 | -195.1~154.5 | -144.8~130.0 | 50.7~87.1 | 82.5~83.7 |
基于低通滤波的深度强化学习控制 | -298.3~195.2 | -95.3~80.5 | 19.6~52.5 | 83.1~84.4 |
基于集合经验模态分解的无源性控制 | -315.2~263.8 | -93.5~69.3 | 15.2~50.1 | 83.4~84.6 |
1 | 金勇, 黄先进, 石春珉, 等. 城市轨道交通地面储能技术应用综述[J]. 电工技术学报, 2024, 39(15): 4568-4582, 4642. DOI: 10.19595/j.cnki.1000-6753.tces.231712. |
JIN Y, HUANG X J, SHI C M, et al. Review on wayside energy storage technology for urban rail transit[J]. Transactions of China Electrotechnical Society, 2024, 39(15): 4568-4582, 4642. DOI: 10.19595/j.cnki.1000-6753.tces.231712. | |
2 | HUANG Y, HU H T, GE Y B, et al. Joint sizing optimization method of PVs, hybrid energy storage systems, and power flow controllers for flexible traction substations in electric railways[J]. IEEE Transactions on Sustainable Energy, 2024, 15(2): 1210-1223. DOI: 10.1109/TSTE.2023.3331346. |
3 | 滕世平. 基于车载超级电容储能系统在城市轨道交通的应用[J]. 储能科学与技术, 2022, 11(7): 2398-2399. |
TENG S P. Application of energy storage system based on vehicle-mounted supercapacitor in urban rail transit[J]. Energy Storage Science and Technology, 2022, 11(7): 2398-2399. | |
4 | 宋元明, 刘亚杰, 金光, 等. 锂离子电池/超级电容器混合储能系统能量管理方法综述[J]. 储能科学与技术, 2024, 13(2): 652-668. DOI: 10.19799/j.cnki.2095-4239.2023.0568. |
SONG Y M, LIU Y J, JIN G, et al. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. DOI: 10.19799/j.cnki.2095-4239.2023.0568. | |
5 | DONG H Z, TIAN Z B, SPENCER J W, et al. Bi-level optimization of sizing and control strategy of hybrid energy storage system in urban rail transit considering substation operation stability[J]. IEEE Transactions on Transportation Electrification, 2024, PP(99): 1. DOI: 10.1109/TTE.2024.3385821. |
6 | CHEN M W, LV Y B, LU W J, et al. Train-network-HESS integrated optimization for long-distance AC urban rail transit to minimize the comprehensive cost[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 54-67. DOI: 10.1109/TITS.2022.3218639. |
7 | FEDELE E, IANNUZZI D, TRICOLI P, et al. NPC-based multi-source inverters for multimode DC rail traction systems[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 1289-1299. DOI: 10.1109/TTE.2022.3175097. |
8 | DA SILVA MORAES C G, BROCKVELD S L, HELDWEIN M L, et al. Power conversion technologies for a hybrid energy storage system in diesel-electric locomotives[J]. IEEE Transactions on Industrial Electronics, 2021, 68(10): 9081-9091. DOI: 10.1109/TIE.2020.3021643. |
9 | SUN Y S, TANG X S, SUN X Z, et al. Model predictive control and improved low-pass filtering strategies based on wind power fluctuation mitigation[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(3): 512-524. DOI: 10.1007/s40565-018-0474-5. |
10 | WANG B Y, SANIIE J. Massive ultrasonic data compression using wavelet packet transformation optimized by convolutional autoencoders[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(3): 1395-1405. DOI: 10.1109/TNNLS.2021.3105367. |
11 | WANG T H, LI Q, YIN L Z, et al. Hierarchical power allocation method based on online extremum seeking algorithm for dual-PEMFC/battery hybrid locomotive[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5679-5692. DOI: 10.1109/TVT.2021.3078752. |
12 | 魏震波, 姚怡欣, 张雯雯, 等. 基于完备集合经验模态分解的含抽蓄微电网混合储能容量优化配置[J]. 储能科学与技术, 2023, 12(11): 3414-3424. DOI: 10.19799/j.cnki.2095-4239.2023.0432. |
WEI Z B, YAO Y X, ZHANG W W, et al. Capacity-based optimal configuration of microgrid hybrid energy-storage system with pumped storage based on CEEMDAN[J]. Energy Storage Science and Technology, 2023, 12(11): 3414-3424. DOI: 10.19799/j.cnki.2095-4239.2023.0432. | |
13 | ZAHEDI B, NORUM L E. Modeling and simulation of all-electric ships with low-voltage DC hybrid power systems[J]. IEEE Transactions on Power Electronics, 2013, 28(10): 4525-4537. DOI: 10.1109/TPEL.2012.2231884. |
14 | ZHANG X B, WANG B F, GAMAGE D, et al. Model predictive and iterative learning control based hybrid control method for hybrid energy storage system[J]. IEEE Transactions on Sustainable Energy, 2021, 12(4): 2146-2158. DOI: 10.1109/TSTE.2021.3083902. |
15 | ZHANG M F, XU Q W, ZHANG C L, et al. Decentralized coordination and stabilization of hybrid energy storage systems in DC microgrids[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 1751-1761. DOI: 10.1109/TSG.2022.3143111. |
16 | WANG X, LUO Y B, QIN B, et al. Power allocation strategy for urban rail HESS based on deep reinforcement learning sequential decision optimization[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2693-2710. DOI: 10.1109/TTE.2022.3227900. |
17 | 钱玉村, 杨博, 郑如意, 等. 基于经验模态分解-灰色关联度分析-蒲公英优化器改进Elman网络的锂离子电池健康状态估计[J]. 电网技术, 2024, 48(9): 3695-3704. DOI: 10.13335/j.1000-3673.pst.2024.0409. |
QIAN Y C, YANG B, ZHENG R Y, et al. State-of-health estimation of lithium-ion batteries based on EMD-DO-Elman and GRA[J]. Power System Technology, 2024, 48(9): 3695-3704. DOI: 10.13335/j.1000-3673.pst.2024.0409. | |
18 | ZHOU Y J, JI C, DONG Z H, et al. Cooperative control of SFCL and SMES-battery HESS for mitigating effect of ground faults in DC microgrids[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 5403305. DOI: 10.1109/TASC.2021.3103720. |
[1] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
[2] | Yuanming SONG, Yajie LIU, Guang JIN, Xing ZHOU, Xucheng HUANG. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. |
[3] | Minghu WU, Chengpeng YUE, Fan ZHANG, Junxiao LI, Wei HUANG, Sheng HU, Jing TANG. Combined GRU-MLR method for predicting the remaining useful life of lithium batteries via multiscale decomposition [J]. Energy Storage Science and Technology, 2023, 12(7): 2220-2228. |
[4] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[5] | Xin WU, Wenju SHANG, Zhiyong MA, Wei TENG, Shuang ZHANG, Hairong LUO. Coordinated control method for pumped and flywheel hybrid energy storage system [J]. Energy Storage Science and Technology, 2023, 12(2): 468-476. |
[6] | Zhenbo WEI, Yixin YAO, Wenwen ZHANG, Zihang LUO, Yinjiang LI, Yujie REN. Capacity-based optimal configuration of microgrid hybrid energy-storage system with pumped storage based on CEEMDAN [J]. Energy Storage Science and Technology, 2023, 12(11): 3414-3424. |
[7] | Rui CHEN, Kai DING, Lianxing ZU, Qingsong XU, Zongbiao WANG, Dasi LUO, Jingjiang SU, Sheng HU, Jilong MAO. Prediction of state of health of lithium-ion batteries based on the AED-CEEMD-Transformer network [J]. Energy Storage Science and Technology, 2023, 12(10): 3242-3253. |
[8] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[9] | Bin GUO, Jie XING, Fei YAO, Xiaomin JING. Optimal configuration of user-side hybrid energy storage based on bi-level programming model [J]. Energy Storage Science and Technology, 2022, 11(2): 615-622. |
[10] | Haoyi XIAO, Xiaoxia HE, Jiajia LIANG, Chunli LI. A lithium battery life-prediction method based on mode decomposition and machine learning [J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009. |
[11] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
[12] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[13] | ZHANG Qian, WU Xiaolan, BAI Zhifeng, CHENG Jingyi. Research on adaptive energy management strategy of hybrid energy storage system in electric vehicles [J]. Energy Storage Science and Technology, 2020, 9(3): 878-884. |
[14] | ZHANG Baoge, LI Ping, ZHANG Zhen, WANG Yu, RONG Yao. Energy management strategy of hybrid energy storage system for urban rail trains [J]. Energy Storage Science and Technology, 2020, 9(1): 204-210. |
[15] | ZHANG Baoge, ZHANG Zhen, WANG Donghao, LI Ping, RONG Yao. A bidirectional DC/DC converter for hybrid energy storage system [J]. Energy Storage Science and Technology, 2020, 9(1): 178-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||