Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 3194-3206.doi: 10.19799/j.cnki.2095-4239.2025.0127
• Energy Storage Test: Methods and Evaluation • Previous Articles
Received:
2025-02-12
Revised:
2025-03-12
Online:
2025-08-28
Published:
2025-08-18
Contact:
Guofeng CHANG
E-mail:1758001512@qq.com;changguofeng@tongji.edu.cn
CLC Number:
Teng ZHANG, Guofeng CHANG. Thermal characterization and thermal consistency study of battery packs based on differences in monomer characteristic parameters[J]. Energy Storage Science and Technology, 2025, 14(8): 3194-3206.
Table 3
Discharge and heat generation characteristics of parallel battery pack and series battery pack when SOC was inconsistent"
连接方式 | 能量释放/Ah | 平均发热率/W | 最大发热率差异/W | 发热量的最大标准差/W | 放电后的平均温度/℃ | 放电后的最高温度/℃ | 最大温差/℃ | 温度的最大标准差/℃ |
---|---|---|---|---|---|---|---|---|
并联 | 379.575 | 2.670 | 6.499 | 2.265 | 32.997 | 33.319 | 1.778 | 0.620 |
串联 | 366.042 | 2.601 | 1.261 | 0.475 | 32.567 | 32.898 | 0.767 | 0.275 |
Table 5
Discharge and heat generation characteristics of parallel battery pack and series battery pack when initial capacity was inconsistent"
连接方式 | 能量释放/Ah | 平均发热率/W | 最大发热率差异/W | 发热量的最大标准差/W | 放电后的平均温度/℃ | 放电后的最高温度/℃ | 最大温差/℃ | 温度的最大标准差/℃ |
---|---|---|---|---|---|---|---|---|
并联 | 419.008 | 2.645 | 1.388 | 0.476 | 33.232 | 33.886 | 1.222 | 0.421 |
串联 | 415.38 | 2.585 | 1.133 | 0.431 | 32.780 | 33.102 | 0.670 | 0.233 |
Table 7
Discharge and heat generation characteristics of parallel battery pack and series battery pack when internal resistance was inconsistent"
连接方式 | 能量释放/Ah | 平均发热率/W | 最大发热率差异/W | 发热量的最大标准差/W | 放电后的平均温度/℃ | 放电后的最高温度/℃ | 最大温差/℃ | 温度的最大标准差/℃ |
---|---|---|---|---|---|---|---|---|
并联 | 418.717 | 2.636 | 1.436 | 0.405 | 33.204 | 33.469 | 0.578 | 0.215 |
串联 | 420 | 2.640 | 0.262 | 0.097 | 33.233 | 33.467 | 0.512 | 0.190 |
[1] | ZHENG Y J, OUYANG M G, HAN X B, et al. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2018, 377: 161-188. DOI: 10.1016/j.jpowsour.2017. 11.094. |
[2] | PLETT G L. Battery management systems, Volume II: Equivalent-circuit methods[M]. London: Artech House, 2015. |
[3] | TIAN J Q, LIU X H, LI S Q, et al. Lithium-ion battery health estimation with real-world data for electric vehicles[J]. Energy, 2023, 270: 126855. DOI: 10.1016/j.energy.2023.126855. |
[4] | ZHANG C P, JIANG Y, JIANG J C, et al. Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries[J]. Applied Energy, 2017, 207: 510-519. DOI: 10.1016/j.apenergy.2017.05.176. |
[5] | TIAN J Q, WANG Y J, LIU C, et al. Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles[J]. Energy, 2020, 194: 116944. DOI: 10.1016/j.energy.2020.116944. |
[6] | ZHAO D, ZHOU Z J, ZHANG P, et al. Health condition assessment of satellite Li-ion battery pack considering battery inconsistency and pack performance indicators[J]. Journal of Energy Storage, 2023, 60: 106604. DOI: 10.1016/j.est.2023. 106604. |
[7] | ZHENG L F, ZHU J G, WANG G X, et al. Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter[J]. Energy, 2018, 158: 1028-1037. DOI: 10.1016/j.energy.2018. 06.113. |
[8] | FENG F, HU X S, LIU K L, et al. A practical and comprehensive evaluation method for series-connected battery pack models[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 391-416. DOI: 10.1109/TTE.2020.2983846. |
[9] | GE Y L, CHEN Z Q. Inconsistency identification and state estimation of series-connected lithium-ion battery pack based on STF&LM algorithm[J]. Proceedings of the Chinese Society of Electrical Engineering, 2018, 38(14): 4271-4280. DOI: 10.13334/j.0258-8013.pcsee.171366. |
[10] | 陈峥, 杨博, 赵志刚, 等. 考虑锂电池温度和老化的荷电状态估算[J]. 储能科学与技术, 2024, 13(8): 2813-2822. DOI: 10.19799/j.cnki. 2095-4239.2024.0141. |
CHEN Z, YANG B, ZHAO Z G, et al. State of charge estimation considering lithium battery temperature and aging[J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. DOI: 10.19799/j.cnki.2095-4239.2024.0141. | |
[11] | 任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743. DOI: 10.19799/j.cnki.2095-4239.2020.0395. |
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. DOI: 10.19799/j.cnki.2095-4239.2020.0395. | |
[12] | ZHOU L, ZHENG Y J, OUYANG M G, et al. A study on parameter variation effects on battery packs for electric vehicles[J]. Journal of Power Sources, 2017, 364: 242-252. DOI: 10.1016/j.jpowsour. 2017.08.033. |
[13] | PAUL S, DIEGELMANN C, KABZA H. Analysis of ageing inhomogeneities in lithium-ion battery systems[J]. Journal of Power Sources, 2013, 239: 642-650. DOI: 10.1016/j.jpowsour. 2013.01.068. |
[14] | ZHANG Y L, XU J, YANG S C, et al. Battery module capacity fade model based on cell voltage inconsistency and probability distribution[J]. Advances in Mechanical Engineering, 2017, 9(9): 168781401773075. DOI: 10.1177/1687814017730757. |
[15] | 陈国贺, 吕培召, 李孟涵, 等. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482. DOI: 10.19799/j.cnki.2095-4239.2024.0091. |
CHEN G H, LYU P Z, LI M H, et al. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies[J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. DOI: 10.19799/j.cnki. 2095-4239.2024.0091. | |
[16] | NASERI F, SCHALTZ E, STROE D I, et al. An enhanced equivalent circuit model with real-time parameter identification for battery state-of-charge estimation[J]. IEEE Transactions on Industrial Electronics, 2021, 69(4): 3743-3751. DOI: 10.1109/TIE.2021.3071679. |
[17] | HE H W, XIONG R, GUO H Q, et al. Comparison study on the battery models used for the energy management of batteries in electric vehicles[J]. Energy Conversion and Management, 2012, 64: 113-121. DOI: 10.1016/j.enconman.2012.04.014. |
[18] | CHANG G F, CUI X, LI Y Y, et al. Effects of reciprocating liquid flow battery thermal management system on thermal characteristics and uniformity of large lithium-ion battery pack[J]. International Journal of Energy Research, 2020, 44(8): 6383-6395. DOI: 10.1002/er.5363. |
[19] | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. DOI: 10.1149/1.2113792. |
[20] | WANG Y Q, ZHAO Y J, ZHOU S Y, et al. Impact of individual cell parameter difference on the performance of series-parallel battery packs[J]. ACS Omega, 2023, 8(11): 10512-10524. DOI: 10.1021/acsomega.3c00266. |
[21] | YU Q Q, HUANG Y K, TANG A H, et al. OCV-SOC-temperature relationship construction and state of charge estimation for a series-parallel lithium-ion battery pack[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(6): 6362-6371. DOI: 10.1109/TITS.2023.3252164. |
[22] | WANG B, JI C W, WANG S F, et al. Study of non-uniform temperature and discharging distribution for lithium-ion battery modules in series and parallel connection[J]. Applied Thermal Engineering, 2020, 168: 114831. DOI: 10.1016/j.applthermaleng. 2019.114831. |
[23] | FAN X Y, ZHANG W G, WANG Z G, et al. Simplified battery pack modeling considering inconsistency and evolution of current distribution[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 630-639. DOI: 10.1109/TITS.2020.3010567. |
[24] | ZHENG Y J, OUYANG M G, LU L G, et al. Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model[J]. Applied Energy, 2013, 111: 571-580. DOI: 10.1016/j.apenergy.2013.05.048. |
[1] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[2] | Yuefeng LI, Weipan XU, Yintao WEI, Weida DING, Yong SUN, Feng XIANG, You LYU, Jiaxiang WU, Yan XIA. Thermal design and simulation analysis of an immersing liquid cooling system for lithium-ions battery packs in energy storage applications [J]. Energy Storage Science and Technology, 2024, 13(10): 3534-3544. |
[3] | Yuefeng LI, Yintao Wei, Xianzhou PENG, Feng XIANG, Hangfeng WANG, Yong SUN, Weipan XU, Wenqiang HUANG. Thermal simulation analysis and optimal design for the influence of altitude on the forced air cooling system for energy storage lithium-ion battery pack [J]. Energy Storage Science and Technology, 2023, 12(9): 2954-2961. |
[4] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
[5] | Haimin WANG, Yufei WANG, Feng HU. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. |
[6] | ZHANG Zhichao, ZHENG Lili, DU Guangchao, DAI Zuoqiang, ZHANG Hongsheng. Electrochemical and thermal behavior simulation experiments based on multiscale lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(1): 124-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||