Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3301-3310.doi: 10.19799/j.cnki.2095-4239.2025.0220
• Energy Storage Materials and Devices • Previous Articles Next Articles
Qifa GAO1(), Nan ZHANG1(
), Zhaoli ZHANG1, Yanxia DU2, Yanping YUAN1
Received:
2025-03-06
Revised:
2025-03-31
Online:
2025-09-28
Published:
2025-09-05
Contact:
Nan ZHANG
E-mail:qfgao98@163.com;zhangn09@swjtu.edu.cn
CLC Number:
Qifa GAO, Nan ZHANG, Zhaoli ZHANG, Yanxia DU, Yanping YUAN. Influence of copper foam on the heat transfer and temperature control characteristics of phase change materials under different force fields[J]. Energy Storage Science and Technology, 2025, 14(9): 3301-3310.
[1] | FU T W, WANG W Z, FANG G Y. Thermal properties and applications of form-stable phase change materials for thermal energy storage and thermal management: A review[J]. Energy Storage, 2024, 6(1): e533. DOI: 10.1002/est2.533. |
[2] | KHAN J, SINGH P. Review on phase change materials for spacecraft avionics thermal management[J]. Journal of Energy Storage, 2024, 87: 111369. DOI: 10.1016/j.est.2024.111369. |
[3] | 杨小虎, 陈凯, 柯汉兵, 等. 变加速度对低熔点金属相变传热特性的影响[J]. 华中科技大学学报(自然科学版), 2022, 50(12): 143-148. DOI: 10.13245/j.hust.221218. |
YANG X H, CHEN K, KE H B, et al. Investigation on influence of variant acceleration on phase change heat transfer characteristics of low melting point metal[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(12): 143-148. DOI: 10.13245/j.hust.221218. | |
[4] | WANG J L, LI T, XU Y. Thermal characteristics of latent heat sinks based on low melting point metal and topologically optimized fins under lateral hypergravity[J]. Applied Thermal Engineering, 2023, 228: 120569. DOI: 10.1016/j.applthermaleng.2023.120569. |
[5] | XU Y, WANG J L, YAN Z H. Experimental investigation on melting heat transfer characteristics of a phase change material under hypergravity[J]. International Journal of Heat and Mass Transfer, 2021, 181: 122004. DOI: 10.1016/j.ijheatmasstransfer.2021.122004. |
[6] | LIU H, ZHANG N, ZHANG Z L, et al. Experimental investigation of the effect of external forces on convection-driven melting of phase change material in a rectangular enclosure[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123489. DOI: 10.1016/j.ijheatmasstransfer.2022.123489. |
[7] | SONG Z L, WANG J, SHAO Z Y, et al. Performance optimization of thermal storage device based on bionic tree-shaped fins and eccentric arrangement[J]. International Communications in Heat and Mass Transfer, 2024, 157: 107774. DOI: 10.1016/j.icheatmasstransfer.2024.107774. |
[8] | 罗意彬, 段文超, 严景好, 等. 双翅片矩形相变储能单元蓄热性能实验研究[J]. 储能科学与技术, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627. |
LUO Y B, DUAN W C, YAN J H, et al. Experimental study on heat storage performance of a double-fin rectangular phase change energy storage unit[J]. Energy Storage Science and Technology, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627. | |
[9] | CHOURE B K, ALAM T, KUMAR R. Optimization of heat transfer in PCM based triple tube heat exchanger using multitudinous fins and eccentric tube[J]. Journal of Energy Storage, 2024, 102: 113981. DOI: 10.1016/j.est.2024.113981. |
[10] | SHAILESH K, NARESH Y, BANERJEE J. Heat transfer performance of a novel PCM based heat sink coupled with heat pipe: An experimental study[J]. Applied Thermal Engineering, 2023, 229: 120552. DOI: 10.1016/j.applthermaleng.2023.120552. |
[11] | HEMMATIAN A, KARGARSHARIFABAD H, ABEDINI ESFAHLANI A, et al. Improving solar still performance with heat pipe/pulsating heat pipe evacuated tube solar collectors and PCM: An experimental and environmental analysis[J]. Solar Energy, 2024, 269: 112371. DOI: 10.1016/j.solener.2024.112371. |
[12] | LI B, MAO Z Y, SONG B W, et al. Enhancement of phase change materials by nanoparticles to improve battery thermal management for autonomous underwater vehicles[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106301. DOI: 10.1016/j.icheatmasstransfer.2022.106301. |
[13] | HASHEM ZADEH S M, MEHRYAN S A M, GHALAMBAZ M, et al. Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives[J]. Energy, 2020, 213: 118761. DOI: 10.1016/j.energy.2020.118761. |
[14] | AFAYNOU I, FARAJI H, CHOUKAIRY K, et al. Heat transfer improvement of phase change materials by metal foams and nanoparticles for efficient electronic thermal management: A comprehensive study[J]. International Journal of Heat and Mass Transfer, 2024, 227: 125534. DOI: 10.1016/j.ijheatmasstransfer. 2024.125534. |
[15] | ÖZTÜRK B, GÖLBAŞı Z, YAZıCı M Y. Experimental investigation of the melting performance of a low porosity metal foam/PCM composite heat sink in various configurations[J]. International Communications in Heat and Mass Transfer, 2023, 149: 107169. DOI: 10.1016/j.icheatmasstransfer.2023.107169. |
[16] | 代建龙, 李果, 曹一通, 等. 多孔金属泡沫强化石蜡相变蓄热性能[J]. 储能科学与技术, 2024, 13(11): 3764-3771. DOI: 10.19799/j.cnki. 2095-4239.2024.0449. |
DAI J L, LI G, CAO Y T, et al. Enhancing phase change heat storage performance of paraffin using porous metal foam[J]. Energy Storage Science and Technology, 2024, 13(11): 3764-3771. DOI: 10.19799/j.cnki.2095-4239.2024.0449. | |
[17] | AFAYNOU I, FARAJI H, CHOUKAIRY K, et al. Effectiveness of a PCM-based heat sink with partially filled metal foam for thermal management of electronics[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126196. DOI: 10.1016/j.ijheatmasstransfer. 2024.126196. |
[18] | SHI J, DU H Y, CHEN Z Q, et al. Review of phase change heat transfer enhancement by metal foam[J]. Applied Thermal Engineering, 2023, 219: 119427. DOI: 10.1016/j.applthermaleng. 2022.119427. |
[19] | SHANG B F, HU J Y, HU R, et al. Modularized thermal storage unit of metal foam/paraffin composite[J]. International Journal of Heat and Mass Transfer, 2018, 125: 596-603. DOI: 10.1016/j.ijheatmasstransfer.2018.04.117. |
[20] | CUI H T. Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam[J]. Applied Thermal Engineering, 2012, 39: 26-28. DOI: 10.1016/j.applthermaleng.2012.01.037. |
[21] | 杨佳霖, 杜小泽, 杨立军, 等. 泡沫金属强化石蜡相变蓄热过程可视化实验[J]. 化工学报, 2015, 66(2): 497-503. DOI: 10.11949/j.issn. 0438-1157.20141182. |
YANG J L, DU X Z, YANG L J, et al. Visualized experiment on dynamic thermal behavior of phase change material in metal foam[J]. CIESC Journal, 2015, 66(2): 497-503. DOI: 10.11949/j.issn.0438-1157.20141182. | |
[22] | MESALHY O, LAFDI K, ELGAFY A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005, 46(6): 847-867. DOI: 10.1016/j.enconman.2004.06.010. |
[23] | CHEN Z Q, GAO D Y, SHI J. Experimental and numerical study on melting of phase change materials in metal foams at pore scale[J]. International Journal of Heat and Mass Transfer, 2014, 72: 646-655. DOI: 10.1016/j.ijheatmasstransfer.2014.01.003. |
[24] | KAMKARI B, SHOKOUHMAND H, BRUNO F. Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure[J]. International Journal of Heat and Mass Transfer, 2014, 72: 186-200. DOI: 10.1016/j.ijheatmasstransfer.2014.01.014. |
[25] | KAMKARI B, GROULX D. Experimental investigation of melting behaviour of phase change material in finned rectangular enclosures under different inclination angles[J]. Experimental Thermal and Fluid Science, 2018, 97: 94-108. DOI: 10.1016/j.expthermflusci.2018.04.007. |
[26] | ZOU J L, ZUO Y G, LIU Z J, et al. Employing perforated copper foam to improve the thermal performance of latent thermal energy storage units[J]. Journal of Energy Storage, 2023, 72: 108616. DOI: 10.1016/j.est.2023.108616. |
[27] | YANG X H, WANG X Y, LIU Z, et al. Thermal performance assessment of a thermal energy storage tank: Effect of aspect ratio and tilted angle[J]. International Journal of Energy Research, 2021, 45(7): 11157-11178. DOI: 10.1002/er.6598. |
[28] | 钮冬科, 金晓怡, 张向伟, 等. 基于Flotherm的电子电路热仿真分析与研究[J]. 现代电子技术, 2015, 38(6): 16-19, 24. DOI: 10.16652/j.issn.1004-373x.2015.06.016. |
NIU D K, JIN X Y, ZHANG X W, et al. Thermal simulation analysis for electronic circuit on flotherm[J]. Modern Electronics Technique, 2015, 38(6): 16-19, 24. DOI: 10.16652/j.issn.1004-373x.2015.06.016. |
[1] | Yanping YUAN, Qifa GAO, Nan ZHANG, Qinrong SUN. Numerical analysis of thermal storage characteristics of gradient-porosity copper foam-enhanced phase change materials [J]. Energy Storage Science and Technology, 2025, 14(8): 3100-3109. |
[2] | Taotao LIU, Shaopeng ZHANG, Yifei WANG, Xipeng LIN. Organic porous shape-stabilized composite phase change materials for thermal energy storage: A review [J]. Energy Storage Science and Technology, 2025, 14(7): 2635-2653. |
[3] | Fankang MENG, Dongkun PENG, Peng CAI. Simulation of the heat storage and release performance of a phase-change solar greenhouse in a severely cold area [J]. Energy Storage Science and Technology, 2025, 14(6): 2532-2539. |
[4] | Yiming LI, Jinghao YAN, Li'na XI, Xiaobing SUN, Minggao LIU, Jie LI, Xiaoqin SUN. Numerical simulation study on the thermal storage performance of eccentric tubular phase change thermal storage units filled with composite phase change materials/metal foam [J]. Energy Storage Science and Technology, 2025, 14(5): 1931-1942. |
[5] | Bin YANG, Xiangjing YU, Yang ZHENG, Shixuan YANG, Qirong YANG, Daliang QIAO, Yang SUN, Youping LI. Numerical analysis of fin optimization for a shell-and-tube phase change energy storage heat exchanger [J]. Energy Storage Science and Technology, 2025, 14(4): 1394-1412. |
[6] | Zhe HUANG, Zhiming YU, Zhaojin QING, Zhaoli ZHANG. Heat transfer characteristics of spherical thermal storage units based on PW/SEBS/EG composite phase change materials in a rotating fluid medium [J]. Energy Storage Science and Technology, 2025, 14(4): 1413-1423. |
[7] | Yixuan LIU, Xiaofen REN, Shanhu TONG, Zhiguo SHI, Xiaohui SHE. Cooling performance of air-cooled evaporator based on phase-change cold storage [J]. Energy Storage Science and Technology, 2025, 14(2): 505-514. |
[8] | Yan CHEN, Ziqi LI, Nanhao CHEN, Yichi ZHANG, Xiaohong WU, Dazhu CHEN. Advances in polymeric solid-solid phase change materials based on polyethylene glycol [J]. Energy Storage Science and Technology, 2025, 14(1): 124-139. |
[9] | Songyan LIU, Weiliang WANG, Shiliang PENG, Junfu LYU. Thermal management system for power battery in high/low-temperature environments [J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191. |
[10] | Chenyang ZHAO, Xiaokun YU, Yubing TAO. Preparation and characterization of modified CuO nanoparticles/n-octadecane phase change material [J]. Energy Storage Science and Technology, 2024, 13(6): 1786-1793. |
[11] | Peng NI, Shihao CAO. Melting heat storage properties of metal honeycomb/paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2024, 13(2): 425-435. |
[12] | Jianlong DAI, Guo LI, Yitong CAO, Zihan YANG, Zhiyuan XIA, Gongshuo ZHANG, Rui CHEN, Nan SHENG, Chunyu ZHU. Enhancing phase change heat storage performance of paraffin using porous metal foam [J]. Energy Storage Science and Technology, 2024, 13(11): 3764-3771. |
[13] | Jiangtian ZHU, Yuan ZHANG, Yibin LUO, Huiting YANG, Jie LI, Xiaoqin SUN. Optimization of 5G communication base station cabinet based on heat storage of phase change material [J]. Energy Storage Science and Technology, 2023, 12(9): 2789-2798. |
[14] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
[15] | Qi ZHANG, Yinlei LI, Yanfang LI, Jun SONG, Xuehong WU, Chongyang LIU, Xueling ZHANG. Preparation and thermal characterization of expanded graphite/multiwalled carbon nanotube-based eutectic salt-composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2435-2443. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||