Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3290-3300.doi: 10.19799/j.cnki.2095-4239.2025.0139
• Energy Storage Materials and Devices • Previous Articles Next Articles
Wenyan CHEN1(), Ruilin HE1, Jian CHANG1,2(
), Yonghong DENG1(
)
Received:
2025-02-22
Revised:
2025-03-10
Online:
2025-09-28
Published:
2025-09-05
Contact:
Jian CHANG, Yonghong DENG
E-mail:12149001@mail.sustech.edu.cn;changj@sustech.edu.cn;yhdeng08@163.com
CLC Number:
Wenyan CHEN, Ruilin HE, Jian CHANG, Yonghong DENG. Investigation of lithium storage mechanisms in liquid metal electrodes with different morphologies[J]. Energy Storage Science and Technology, 2025, 14(9): 3290-3300.
Table 1
Performance comparison between LMNP negative electrode and liquid metal based negative electrode reported in literature"
Materials | Current density/(A/g) | Cycle number | Capacity/capacity retention/% | Ref. |
---|---|---|---|---|
LMNP | 2.0 | 300 | 399.3/86.9% | this work |
LM-Ti3C2T x | 5 | 4500 | 409.8/90.8% | [ |
EGaIn@C | 1 | 800 | 644/- | [ |
CF/O-GaSn | 0.16 | 150 | 364.7/- | [ |
Ga/LiF | 0.5 | 100 | 712/- | [ |
LMMs | 5 | 5000 | 413/- | [ |
[1] | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. DOI: 10.19799/j.cnki.2095-4239. 2020-0050. |
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. DOI: 10.19799/j.cnki.2095-4239.2020-0050. | |
[2] | ARMAND M, AXMANN P, BRESSER D, et al. Lithium-ion batteries—Current state of the art and anticipated developments[J]. Journal of Power Sources, 2020, 479: 228708. DOI: 10.1016/j.jpowsour.2020.228708. |
[3] | MIAO Y P, LIU L L, ZHANG Y P, et al. An overview of global power lithium-ion batteries and associated critical metal recycling[J]. Journal of Hazardous Materials, 2022, 425: 127900. DOI: 10.1016/j.jhazmat.2021.127900. |
[4] | 杜进桥, 田杰, 李艳, 等. 锂离子电池石墨负极失效及其先进表征方法[J]. 储能科学与技术, 2024, 13(10): 3467-3479. DOI: 10.19799/j.cnki.2095-4239.2024.0284. |
DU J Q, TIAN J, LI Y, et al. Failure of graphite negative electrode in lithium-ion batteries and advanced characterization methods[J]. Energy Storage Science and Technology, 2024, 13(10): 3467-3479. DOI: 10.19799/j.cnki.2095-4239.2024.0284. | |
[5] | LI J W, WANG T D, WANG Y J, et al. Solid-liquid-solid growth of doped silicon nanowires for high-performance lithium-ion battery anode[J]. Nano Energy, 2025, 133: 110455. DOI: 10.1016/j.nanoen.2024.110455. |
[6] | 尹坚, 董季玲, 丁皓, 等. 锂离子电池过渡金属氧化物负极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 995-1001. DOI: 10.19799/j.cnki.2095-4239.2020.0412. |
YIN J, DONG J L, DING H, et al. Research progress of transition metal oxide anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001. DOI: 10.19799/j.cnki.2095-4239.2020.0412. | |
[7] | LI X W, WANG J H, YANG L F, et al. Element screening engineering for high-entropy alloy anodes: Achieving fast and robust Li-storage with optimal working potential[J]. Advanced Materials, 2024, 36(48): 2409278. DOI: 10.1002/adma.202409278. |
[8] | PONNURU H, MARRIAM I, RAMBUKWELLA I, et al. Recent advances in liquid metals for rechargeable batteries[J]. Advanced Functional Materials, 2024, 34(31): 2309706. DOI: 10.1002/adfm.202309706. |
[9] | 陈玉, 夏鑫. 可充电电池的镓基液态金属负极材料研究进展[J]. 电源技术, 2021, 45(1): 132-135. |
CHEN Y, XIA X. Research progress of gallium-based liquid metal anode materials for rechargeable batteries[J]. Chinese Journal of Power Sources, 2021, 45(1): 132-135. | |
[10] | 张剑峰, 陈玉, 刘航, 等. 碳基GaSn合金负极材料的制备及其电化学性能[J]. 化工新型材料, 2024, 52(10): 90-95. DOI: 10.19817/j.cnki.issn1006-3536.2024.10.047. |
ZHANG J F, CHEN Y, LIU H, et al. Preparation and electrochemical performance analysis of carbon-based GaSn alloy anode materials[J]. New Chemical Materials, 2024, 52(10): 90-95. DOI: 10.19817/j.cnki.issn1006-3536.2024.10.047. | |
[11] | 张春小, 崔丹丹, 杜轶, 等. 镓基液态金属的结构与物性[J]. 自然杂志, 2023, 45(5): 340-354. DOI: 10.3969/j.issn.0253-9608.2023.05.003. |
ZHANG C X, CUI D D, DU Y, et al. Structure and physical properties of gallium-based liquid metal[J]. Chinese Journal of Nature, 2023, 45(5): 340-354. DOI: 10.3969/j.issn.0253-9608. 2023.05.003. | |
[12] | SONG M J, WANG Y, YU B, et al. A high-performance room-temperature magnesium ion battery with self-healing liquid alloy anode mediated with a bifunctional intermetallic compound[J]. Chemical Engineering Journal, 2022, 450: 138176. DOI: 10.1016/j.cej.2022.138176. |
[13] | GU J N, TAO Y, CHEN H, et al. Stress-release functional liquid metal-MXene layers toward dendrite-free zinc metal anodes[J]. Advanced Energy Materials, 2022, 12(16): 2200115. DOI: 10. 1002/aenm.202200115. |
[14] | FU H, LIU G C, XIONG L Y, et al. A shape-variable, low-temperature liquid metal-conductive polymer aqueous secondary battery[J]. Advanced Functional Materials, 2021, 31(50): 2107062. DOI: 10.1002/adfm.202107062. |
[15] | WEI C L, TAN L W, TAO Y, et al. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte[J]. Energy Storage Materials, 2021, 34: 12-21. DOI: 10.1016/j.ensm.2020. 09.006. |
[16] | 尹富强, 赵玉辰, 李赵春. 镓基液态金属应用的研究进展[J]. 现代化工, 2022, 42(5): 24-29. DOI: 10.16606/j.cnki.issn0253-4320.2022.05.005. |
YIN F Q, ZHAO Y C, LI Z C. Advances on application of gallium-based liquid metal[J]. Modern Chemical Industry, 2022, 42(5): 24-29. DOI: 10.16606/j.cnki.issn0253-4320.2022.05.005. | |
[17] | WEI C L, FEI H F, TIAN Y, et al. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries[J]. Small, 2019, 15(46): 1903214. DOI: 10.1002/smll.201903214. |
[18] | ZHANG H N, CHEN P Y, XIA H, et al. An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti3C2Tx network for enhanced lithium storage[J]. Energy & Environmental Science, 2022, 15(12): 5240-5250. DOI: 10.1039/D2EE02147A. |
[19] | HUANG C H, GUO B Y, WANG X D, et al. Alkali-ion batteries by carbon encapsulation of liquid metal anode[J]. Advanced Materials, 2024, 36(4): 2309732. DOI: 10.1002/adma.202309732. |
[20] | LIN X R, CHEN A, YANG C Y, et al. A room-temperature self-healing liquid metal-infilled microcapsule driven by coaxial flow focusing for high-performance lithium-ion battery anode[J]. Small, 2024, 20(16): 2307071. DOI: 10.1002/smll.202307071. |
[21] | WANG K Z, HU J, CHEN T Y, et al. CuGa2 transition phase anchored liquid GaSn achieves high-performance liquid metal battery cathode[J]. Journal of Energy Storage, 2024, 89: 111879. DOI: 10.1016/j.est.2024.111879. |
[22] | YANG J H, ZHOU W, HU J M, et al. Universal renaissance strategy of metal fluoride in secondary ion batteries enabled by liquid metal gallium[J]. Advanced Materials, 2023, 35(28): 2301442. DOI: 10.1002/adma.202301442. |
[23] | LIN X R, CHEN A, YANG C Y, et al. A room-temperature self-healing liquid metal-infilled microcapsule driven by coaxial flow focusing for high-performance lithium-ion battery anode[J]. Small, 2024, 20(16): 2307071. DOI: 10.1002/smll.202307071. |
[24] | WANG Q Y, ZHU M, CHEN G R, et al. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism[J]. Advanced Materials, 2022, 34(16): 2109658. DOI: 10.1002/adma.202109658. |
[25] | HAN B, ZOU Y C, KE R H, et al. Stable lithium metal anodes with a GaOx artificial solid electrolyte interphase in damp air[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21467-21473. DOI: 10.1021/acsami.1c04196. |
[26] | HAN B, XU D W, CHI S S, et al. 500 Wh/kg class Li metal battery enabled by a self-organized core-shell composite anode[J]. Advanced Materials, 2020, 32(42): 2004793. DOI: 10.1002/adma.202004793. |
[27] | NI J F, ZHU X C, YUAN Y F, et al. Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage[J]. Nature Communications, 2020, 11: 1212. DOI: 10.1038/s41467-020-15045-x. |
[1] | Xiuwen TAN, Ling LI. Study on the thermal runaway characteristics of lithium-ion batteries and their thermal management under local overheating conditions [J]. Energy Storage Science and Technology, 2025, 14(9): 3521-3529. |
[2] | Tuo DENG, Haiping ZHOU, Yu LIU, Chang LIU, Zikai LI, Mengqiang WU. Research progress in the preparation of silicon-carbons anode by chemical vapor deposition [J]. Energy Storage Science and Technology, 2025, 14(9): 3354-3372. |
[3] | Yan ZHAO, Hao LIU, Zonglin YI, Li LI, Lijing XIE, Fangyuan SU. Interfacial behavior of FEC and VC at graphite anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3249-3258. |
[4] | Jijin LIN, Qian LIU, Tao QU, Jingkun LI, Dongyong HUANG, Xiaoqing ZHU, Xing JU. Technical and economic analysis of liquid immersion cooling for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2025, 14(9): 3622-3635. |
[5] | Juqiang FENG, Chengzhi ZHANG, Yuhang CHEN. A high-precision SOC and temperature joint estimation method based on rapid prototype modeling [J]. Energy Storage Science and Technology, 2025, 14(9): 3567-3580. |
[6] | Xiaoyu BAI, Yajing YAN, Zhirong ZHANG, Lingli KONG. Research on the performance of composite graphite lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3259-3268. |
[7] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Qiangfu SUN, Bowen ZHENG, Yuhao GU, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. Reviews of selected 100 recent papers for lithium batteries (June 1, 2025 to July 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(9): 3229-3248. |
[8] | Lei ZHANG. Operating status monitoring and evaluation of lithium-ion battery energy storage power stations [J]. Energy Storage Science and Technology, 2025, 14(9): 3538-3540. |
[9] | Xinyu BAO, Xiangdong KONG, Taolin LV, Zhicheng ZHU, Xuebing HAN, Xin LAI, Yuejiu ZHENG, Tao SUN. Battery internal resistance prediction and rapid sorting method based on production line big data [J]. Energy Storage Science and Technology, 2025, 14(9): 3541-3551. |
[10] | Honghui LIU, Donghui LI, Qifeng QIAN, Lingchao XIAO, Lei XIONG, Zhongguo CHEN. Preparation of vanadium nitride-based electrode materials and their application progress in supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(8): 3110-3121. |
[11] | Chengshan XU, Ye SUN, Zhikai YANG, Mingqiang ZHAO, Yalun LI, Xuning FENG, Hewu WANG, Languang LU, Minggao OUYANG. Research progress on arc induced by thermal runaway in lithium-ion battery systems for energy storage [J]. Energy Storage Science and Technology, 2025, 14(8): 3037-3050. |
[12] | Pengju LI, Xiaoyu CHEN, Jia XIE, Jiani SHEN, Yijun HE. Research progress on state of power prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3028-3036. |
[13] | Liyue HU, Wei HUANG, Yun ZHOU, Yingqiang ZHOU, Changzheng SHAO, Ke WANG. Fuzzy reasoning-based evaluation of the thermal diffusion probability of lithium-ion battery modules for energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(7): 2662-2674. |
[14] | Feng XIONG, Depeng KONG, Ping PING, Yue ZHANG, Xiantong REN, Yao LV. Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2752-2760. |
[15] | Wenyuan WENG, Bin SHEN, Jiangong ZHU, Yang WANG, Huapeng LU, Wuliyasu HE, Haonan LIU, Haifeng DAI, Xuezhe WEI. Detecting hazardous lithium plating on anodes of lithium-ion batteries—A review of in situ methods [J]. Energy Storage Science and Technology, 2025, 14(7): 2575-2589. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||