Energy Storage Science and Technology
Wenyuan Weng1(), Bin Shen2(
), Jiangong Zhu1(
), Yang Wang2, Huapeng Lu2, Wuliyasu He2, Haonan Liu1, Haifeng Dai1, Xuezhe Wei1
Received:
2024-03-14
Revised:
2024-04-05
Contact:
Bin Shen, Jiangong Zhu
E-mail:2332933@tongji.edu.cn;bin.shen@volvocars.com;zhujiangong@tongji.edu.cn
CLC Number:
Wenyuan Weng, Bin Shen, Jiangong Zhu, Yang Wang, Huapeng Lu, Wuliyasu He, Haonan Liu, Haifeng Dai, Xuezhe Wei. Detecting hazard lithium plating on anodes for lithium-ion batteries – A review on the in-situ methods[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0241.
Fig. 4
(a) Schematic diagram of a three-electrode cell; (b) Principle of anode potential measurement; (c) Experimental results under different combinations of temperature, cut-off voltage, and charging rate;(d) Schematic of CE versus charging C rate with both the time-dependent and charging C rate-dependent resolved curves (bottom) and the resulting CE versus rate curve (top) at different temperatures"
Fig. 7
(a) Three stages of lithium plating; (b) Safety boundary for lithium plating in lithium-ion batteries; (c) Schematic diagram of the boundary between lithium intercalation into graphite and lithium deposition at 0℃, the “x” symbol represents the inflection points of charge transfer resistance changes at different charging rates at 0℃, and the black and red lines are obtained by fitting these inflection points; (d) DSC curve; (e) DSC results of the negative electrodes of different N/P batteries; (f) Critical temperature diagram for battery thermal runaway; (g) Predicted safety status of different N/P batteries based on a warning temperature of 70℃, with the safety boundary extended to different charging rates to provide scientific guidance for fast charging, and the green area shown in the figure can serve as a reference for battery design"
1 | LIU K, WEI Z, ZHANG C, et al. Towards Long Lifetime Battery: AI-Based Manufacturing and Management [J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1139-65. |
2 | LIU Q, DU C, SHEN B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries [J]. ;[ 1 ] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China, 2016, Vol.6(No.91): 88683-700. |
3 | MATHIAS PETZL M A D. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2014, Vol.254(No.0): 80-7. |
4 | WHITEHEAD A H, PERKINS M, OWEN J R. A graphical aid to evaluation of carbon-based Li-ion electrodes [J]. ; Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China, Beijing Jiaotong University; Beijing Jiaotong Univ, Collaborat Innovat Ctr Elect Vehicles, 1997, Vol.144(NO.4): L92-L. |
5 | VERBRUGGE M W, KOCH B J. The effect of large negative potentials and overcharge on the electrochemical performance of lithiated carbon [J]. GM CORP CTR RES & DEV PHYS & PHYS CHEM DEPT WARREN MI 48090 USA, 1997, Vol.436(No.1): 1-7. |
6 | JEON Y, KANG S, JOO S H. Pyridinic-to-graphitic conformational change of nitrogen in graphitic carbon nitride by lithium coordination during lithium plating [J]. Energy Storage Materials, 2020, Vol.31: 505-14. |
7 | CHEN K-H, WOOD K N, KAZYAK E, et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J]. University of Michigan, Department of Materials Science and Engineering, Ann Arbor, MI, 48109, USA, 1259; University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI, 48109, USA, 1259, 2017, Vol.5(No.23): 11671-81. |
8 | JIANG Y, WANG Z, XU C. Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating [J]. Energy Storage Materials, 2020, Vol.28: 17-26. |
9 | YANG T, SUN Y, QIAN T, et al. Lithium Dendrite Inhibition via 3D Porous Lithium Metal Anode Accompanied by Inherent SEI Layer [J]. Energy Storage Materials, 2019, Vol.26(No.0): 385-90. |
10 | 邓林旺, 冯天宇, 舒时伟, 等. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277 |
DENG Linwang, FENG Tianyu, SHU Shiwei, et al. Nondestructive lithium plating online detection for lithium-ion batteries: A review[J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. | |
11 | 王羽, 周星, 王睿茜, 等. 面向BMS应用的锂离子电池析锂诊断方法综述 [J]. 中国电机工程学报, 2024, 44(21): 8444-62. |
WANG Yu, ZHOU Xing, WANG Ruixi, et al. Lithium Plating Detection Methods in Li-ion Batteries for Battery Management System Application: A Review[J]. Proceedings of the CSEE, 2024, 44(21): 8444-8461. | |
12 | TIAN Y, LIN C, LI H, et al. Detecting undesired lithium plating on anodes for lithium-ion batteries – A review on the in-situ methods [J]. Applied Energy, 2021, 300: 117386. |
13 | LIU S, XIONG L, HE C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode(Article) [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2014, Vol.261(No.0): 285-91. |
14 | 陈佳慧, 王飞, 危荃, 等. 锂电池安全性能无损检测技术研究进展 [J]. 上海神剑精密机械科技有限公司, 2022, 第44卷(第12期): 72-5. |
CHEN Jiahui, WANG Fei, WEI Quan, GAO Xianliang, JIN Cuie, JIN Niuniu. Research progress on nondestructive testing technology of lithium battery safety performance[J]. Nondestructive Testing, 2022, 44(12): 72-75. | |
15 | LIU X M, ARNOLD C B. Effects of Current Density on Defect-Induced Capacity Fade through Localized Plating in Lithium-Ion Batteries [J]. ; Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China, Beijing Jiaotong University; Beijing Jiaotong Univ, Collaborat Innovat Ctr Elect Vehicles, 2020, Vol.167(No.13): 130519. |
16 | ZHAO X, YIN Y, HU Y, et al. Electrochemical-thermal modeling of lithium plating/stripping of Li(Ni0.6Mn0.2Co0.2)O2/Carbon lithium-ion batteries at subzero ambient temperatures [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2019, Vol.418(No.0): 61-73. |
17 | REN D, SMITH K, GUO D, et al. Investigation of lithium plating-stripping process in li-ion batteries at low temperature using an electrochemical model [J]. ; Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China, Beijing Jiaotong University; Beijing Jiaotong Univ, Collaborat Innovat Ctr Elect Vehicles, 2018, Vol.165(No.10): A2167-A78. |
18 | YANG X, ZHANG G, GE S, et al. Fast charging of lithium-ion batteries at all temperatures(Article) [J]. Electrochemical Engine Center, Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, United States;National Engineering, 2018, Vol.115(No.28): 7266-71. |
19 | WALDMANN T, HOGG B-I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells – A review [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2018, Vol.384(No.0): 107-24. |
20 | TANIM T R, DUFEK E J, DICKERSON C C, et al. Electrochemical Quantification of Lithium Plating: Challenges and Considerations [J]. ; Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China, Beijing Jiaotong University; Beijing Jiaotong Univ, Collaborat Innovat Ctr Elect Vehicles, 2019, Vol.166(No.12): A2689-A96. |
21 | RANGARAJAN S P, BARSUKOV Y, * P P M. In operando signature and quantification of lithium plating(Article) [J]. University of Michigan, Department of Materials Science and Engineering, Ann Arbor, MI, 48109, USA, 1259; University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI, 48109, USA, 1259, 2019, Vol.7(No.36): 20683-95. |
22 | ZHANG L, ZHANG Z, REDFERN P, et al. Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection [J]. Corresponding authors; Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, USA E-mail: luzhang@anlgov, zzhang@anlgov, amine@anlgov Fax: +1-630-972-4469 Tel: +1-630-, 2012, Vol.5(No.8): 8204-7. |
23 | JUAREZ-ROBLES D, VYAS A A, FEAR C, et al. Overcharge and Aging Analytics of Li-Ion Cells(Article) [J]. ; Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China, Beijing Jiaotong University; Beijing Jiaotong Univ, Collaborat Innovat Ctr Elect Vehicles, 2020, Vol.167(No.9): 090547. |
24 | COSBY M R, CARIGNAN G M, LI Z, et al. Operando Synchrotron Studies of Inhomogeneity during Anode-Free Plating of Li Metal in Pouch Cell Batteries [J]. ; Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China, Beijing Jiaotong University; Beijing Jiaotong Univ, Collaborat Innovat Ctr Elect Vehicles, 2022, Vol.169(No.2): 020571. |
25 | BLOOM I D, JANSEN A N, ABRAHAM D P, et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2005, Vol.139(No.1-2): 295-303. |
26 | PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2014, 254: 80-7. |
27 | O'KANE S E J, CAMPBELL I D, MARZOOK M W J, et al. Physical Origin of the Differential Voltage Minimum Associated with Lithium Plating in Li-Ion Batteries(Article) [J]. ; Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China, Beijing Jiaotong University; Beijing Jiaotong Univ, Collaborat Innovat Ctr Elect Vehicles, 2020, Vol.167(No.9): 090540. |
28 | CAMPBELL I D, MARZOOK M, MARINESCU M, et al. How Observable Is Lithium Plating? Differential Voltage Analysis to Identify and Quantify Lithium Plating Following Fast Charging of Cold Lithium-Ion Batteries [J]. ; Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China Beijing Jiaotong University; Beijing Jiaotong Univ, Collaborat Innovat Ctr Elect Vehicles, 2019, Vol.166(No.4): A725. |
29 | UHLMANN C, ILLIG J, ENDER M, et al. In situ detection of lithium metal plating on graphite in experimental cells [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2015, Vol.279(No.0): 428-38. |
30 | KATZER F, JAHN L, HAHN M, et al. Model-based lithium deposition detection method using differential voltage analysis [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2021, 512: 230449. |
31 | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2016, Vol.304(No.0): 170-80. |
32 | KOLETI U R, DINH T Q, MARCO J. A new on-line method for lithium plating detection in lithium-ion batteries [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2020, Vol.451(No.0): 227798. |
33 | JANAKIRAMAN U, GARRICK T R, FORTIER M E. Review-lithium plating detection methods in li-ion batteries(Review) [J]. ; Beijing Jiaotong Univ, Natl Act Distribut Network Technol Res Ctr NANTEC, Beijing 100044, Peoples R China, Beijing Jiaotong University; Beijing Jiaotong Univ, Collaborat Innovat Ctr Elect Vehicles, 2020, Vol.167(No.16): 160552. |
34 | ANSEáN D, DUBARRY M, DEVIE A, et al. Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2017, 356: 36-46. |
35 | YOU H, JIANG B, ZHU J, et al. In-situ quantitative detection of irreversible lithium plating within full-lifespan of lithium-ion batteries [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2023, 564: 232892. |
36 | HE J, BIAN X, LIU L, et al. Comparative study of curve determination methods for incremental capacity analysis and state of health estimation of lithium-ion battery [J]. Institute for Electrical Energy Storage Technology, Technische Universitt München, Arcisstrae 21, Munich, 80333, Germany;Fraunhofer Institute for Silicate Research, Neunerplatz 2, Würzburg, 97082, Germany, 2020, Vol.29: 101400. |
37 | BLANC F, LESKES M, GREY C P. In situ solid-state NMR spectroscopy of electrochemical cells: Batteries, supercapacitors, and fuel cells(Article) [J]. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom;Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool, Crown Street, Liverpool L69 7Z, 2013, Vol.46(No.9): 1952-63. |
38 | XIE P, PENG Y, LIU X, et al. Electronegative graphene film based interface-chemistry regulation for stable lithium metal batteries [J]. School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China;Mining and Metallurgical Engineering Department, Tabbin Institute for Metallurgical Studies, Ta, 2023, Vol.478(No.0): 147304. |
39 | ARAI J, OKADA Y, SUGIYAMA T, et al. In situ Solid State 7Li NMR Observation of Lithium Metal Deposition during Overcharge in Lithium Ion Battery [J]. Technology Center, Yamaha Motor Co, Shizuoka 438-8501 Japan Technology Center, Yamaha Motor Co, Shizuoka 438-8501 Japan Technology Center, Yamaha Motor Co, Shizuoka 438-8501, 2014, Vol.62(No.1): 159-87. |
40 | HSIEH Y-C, LEIßING M, NOWAK S, et al. Quantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy [J]. Cell Reports Physical Science, 2020, Vol.1(No.8): 100139. |
41 | KITADA K, PECHER O, MAGUSIN P C M M, et al. Unraveling the Reaction Mechanisms of SiO Anodes for Li-Ion Batteries by Combining in Situ 7 Li and ex Situ 7 Li/ 29 Si Solid-State NMR Spectroscopy [J]. Murata Manufacturing Co, Ltd, 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555, Japan;Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom;NMR Service GmbH, Bl, 2019, Vol.141(No.17): 7014-27. |
42 | HOPE M A-O, RINKEL B L D, GUNNARSDóTTIR A B, et al. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal [J]. (2041-1723 (Electronic)). |
43 | GEISE N R, KASSE R M, WEKER J N, et al. Quantification of Efficiency in Lithium Metal Negative Electrodes via Operando X-ray Diffraction [J]. Department of Chemistry, Stanford University, Stanford, California 94305, United States;SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States;Department of Ma, 2021, Vol.33(No.18): 7537-45. |
44 | PAUL P P, THAMPY V, CAO C, et al. Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries [J]. 2021, 14. |
45 | SADD M, XIONG S, BOWEN J R, et al. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy [J]. Nature Communications, 2023, Vol.14(No.1): 1-11. |
46 | TAIWO O O, FINEGAN D P, PAZ-GARCIA J M. Investigating the evolving microstructure of lithium metal electrodes in 3D using X-ray computed tomography [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, Vol.19(No.33): 22111-20. |
47 | BURNS J C, STEVENS D A, DAHN J R. In-Situ Detection of Lithium Plating Using High Precision Coulometry [J]. Journal of The Electrochemical Society, 2015, 162(6): A959. |
48 | TALIAN S D, BOBNAR J, SINIGOJ A R, et al. Transmission Line Model for Description of the Impedance Response of Li Electrodes with Dendritic Growth [J]. National Institute of Chemistry, 1000 Ljubljana, Slovenia;Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia;Faculty of Chemistry and Chemical Technology, University, 2019, Vol.123(No.46): 27997-8007. |
49 | KOSEOGLOU M, TSIOUMAS E, FERENTINOU D, et al. Lithium plating detection using dynamic electrochemical impedance spectroscopy in lithium-ion batteries [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2021, Vol.512(No.0): 230508. |
50 | WALDMANN T, HOGG B-I, KASPER M, et al. Interplay of Operational Parameters on Lithium Deposition in Lithium-Ion Cells: Systematic Measurements with Reconstructed 3-Electrode Pouch Full Cells [J]. Journal of The Electrochemical Society, 2016, 163(7): A1232. |
51 | RANGARAJAN S, BARSUKOV Y, MUKHERJEE P. In Operando Signature and Quantification of Lithium Plating [J]. Journal of Materials Chemistry A, 2019, 7. |
52 | ABRAHAM D P, POPPEN S D, JANSEN A N, et al. Application of a lithium–tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells [J]. Electrochimica Acta, 2004, 49(26): 4763-75. |
53 | LA MANTIA F, WESSELLS C D, DESHAZER H D, et al. Reliable reference electrodes for lithium-ion batteries [J]. Electrochemistry Communications, 2013, 31: 141-4. |
54 | YANG F, SONG X, DONG G, et al. A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries [J]. Energy, 2019, 171: 1173-82. |
55 | TANIM T, DUFEK E, DICKERSON C, et al. Electrochemical Quantification of Lithium Plating: Challenges and Considerations [J]. Journal of The Electrochemical Society, 2019, 166: A2689-A96. |
56 | PELED E, MENKIN S. Review—SEI: Past, Present and Future [J]. Journal of The Electrochemical Society, 2017, 164(7): A1703. |
57 | PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery – A low-temperature aging study [J]. Journal of Power Sources, 2015, 275: 799-807. |
58 | PASTOR-FERNáNDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems [J]. Journal of Power Sources, 2017, 360: 301-18. |
59 | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells [J]. Journal of Power Sources, 2016, 304: 170-80. |
60 | BROWN D E, MCSHANE E J, KONZ Z M, et al. Detecting onset of lithium plating during fast charging of Li-ion batteries using operando electrochemical impedance spectroscopy [J]. Cell Reports Physical Science, 2021, 2(10): 100589. |
61 | WANG P, QU W, SONG W-L, et al. Electro–Chemo–Mechanical Issues at the Interfaces in Solid-State Lithium Metal Batteries [J]. Institute of Advanced Structure Technology, Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing; 100081, China;School of Material Science and E, 2019, Vol.29(No.27): 1900950. |
62 | WENXIAO HUANG Y Y, HAO CHEN, RAFAEL A VILá, ANDREW XIANG, HONGXIA WANG, FANG LIU, ZHIAO YU, JINWEI XU, ZEWEN ZHANG, RONG XU, YECUN WU, LIEN-YANG CHOU, HANSEN WANG, JUNWEI XU, DAVID TOMAS BOYLE, YUZHANG LI, YI CUI. Onboard early detection and mitigation of lithium plating in fast-charging batteries [J]. Nature communications, 2022, Vol.13(No.1): 7091. |
63 | KIM S, RAJ A, LI B, et al. Correlation of electrochemical and mechanical responses: Differential analysis of rechargeable lithium metal cells [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2020, Vol.463(No.0): 228180. |
64 | BITZER B, GRUHLE A. A new method for detecting lithium plating by measuring the cell thickness [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2014, Vol.262(No.0): 297-302. |
65 | WINTER E, SCHMIDT T J, TRABESINGER S. Potentiostatic Lithium Plating as a Fast Method for Electrolyte Evaluation in Lithium Metal Batteries [J]. Electrochimica Acta, 2022, Vol.439(No.0): 141547. |
66 | RIEGER B, SCHUSTER S F, ERHARD S V, et al. Multi-directional laser scanning as innovative method to detect local cell damage during fast charging of lithium-ion cells [J]. Institute for Electrical Energy Storage Technology, Technische Universitt München, Arcisstrae 21, Munich, 80333, Germany;Fraunhofer Institute for Silicate Research, Neunerplatz 2, Würzburg, 97082, Germany, 2016, 8: 1-5. |
67 | GRIMSMANN F, GERBERT T, BRAUCHLE F, et al. Determining the maximum charging currents of lithium-ion cells for small charge quantities(Article) [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2017, Vol.365(No.0): 12-6. |
68 | ESCHER I, A. FERRERO G, GOKTAS M, et al. In Situ (Operando) Electrochemical Dilatometry as a Method to Distinguish Charge Storage Mechanisms and Metal Plating Processes for Sodium and Lithium Ions in Hard Carbon Battery Electrodes [J]. Advanced Materials Interfaces, 2022, 9(8): 2100596. |
69 | TIAN Y, LIN C, LI H, et al. Detecting undesired lithium plating on anodes for lithium-ion batteries – A review on the in-situ methods [J]. Applied Energy, 2021, Vol.300(No.0): 117386. |
70 | WENLONG CAI C Y, YU-XING YAO, LEI XU, XIAO-RU CHEN, JIA-QI HUANG, QIANG ZHANG. The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries [J]. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beiji, 2021, Vol.60(No.23): 13007-12. |
71 | LIN Y, HU W, DING M, et al. Unveiling the Three Stages of Li Plating and Dynamic Evolution Processes in Pouch C/LiFePO4 Batteries [J]. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park CA, 95025,, USA Chemical and Biomolecular Engineering, University of California & Energy Storage and Distributed Resources Division, Lawrence Berkeley Na, 2024, Vol.14(No.36): 1. |
72 | REN D, LIU X, FENG X, et al. Model_based thermal runaway prediction of lithium_ion batteries from kinetics analysis of cell components [J]. Applied Energy, 2018, Vol.228(No.15Part1-1090): 633-44. |
73 | FLEISCHHAMMER M, WALDMANN T, BISLE G, et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries [J]. Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz Strasse 11, 89081, Ulm, Germany Hei, 2015, 274: 432-9. |
74 | LI H, JI W, ZHANG P, et al. Safety boundary of power battery based on quantitative lithium deposition [J]. Institute for Electrical Energy Storage Technology, Technische Universitt München, Arcisstrae 21, Munich, 80333, Germany;Fraunhofer Institute for Silicate Research, Neunerplatz 2, Würzburg, 97082, Germany, 2022, 52: 104789. |
75 | FENG X, ZHENG S, REN D, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database [J]. Applied Energy, 2019, Vol.246(No.C): 53-64. |
76 | WALDMANN T, WOHLFAHRT-MEHRENS M. Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells [J]. Electrochimica Acta, 2017, 230: 454-60. |
77 | ZHOU H, FEAR C, CARTER R E, et al. Correlating lithium plating quantification with thermal safety characteristics of lithium-ion batteries [J]. Energy Storage Materials, 2024, Vol.66: 103214. |
[1] | Shuangming DUAN, Kuifeng XIA, Wei ZHU. Multi-stage optimization charging strategy for lithium-ion batteries considering diverse application scenarios [J]. Energy Storage Science and Technology, 2025, 14(2): 779-790. |
[2] | Pengjie ZHU, Wei LI, Chu ZHANG, Hao SONG, Beibei LI, Xiumei LIU, Lili LIU. Study on early warning system for thermal runaway of lithium batteries in energy storage cabinets due to smoke and gas diffusion [J]. Energy Storage Science and Technology, 2025, 14(2): 624-635. |
[3] | Jinhao YE, Junhui HOU, Zhengguo ZHANG, Ziye LING, Xiaoming FANG, Silin HUANG, Zhiwen XIAO. Thermal runaway characteristics and gas generation behavior of 100 Ah lithium iron phosphate pouch cell [J]. Energy Storage Science and Technology, 2025, 14(2): 636-647. |
[4] | Huaiyu HUANG, Silin HUANG, Rongchao ZHAO, Zhiwen XIAO, Junhui HOU, Liwei YAN. Experimental study on thermal runaway characteristics triggered by insulation failure of aluminum-plastic film shell of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2025, 14(2): 613-623. |
[5] | Hairui WANG, Changyu XU, Guifu ZHU, Xiaojian HOU. A parallel multi cale-featured fusion model for state-of-health estimation of lithium-ion batteries based on relaxation voltage [J]. Energy Storage Science and Technology, 2025, 14(2): 799-811. |
[6] | Zhiwei KUANG, Zhendong ZHANG, Lei SHENG, Linxiang FU. Research on low-temperature rapid heating method for high-capacity lithium-ion batteries in energy storage [J]. Energy Storage Science and Technology, 2025, 14(2): 791-798. |
[7] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[8] | Jianru ZHANG, Qiyu WANG, Qinghao LI, Xianying ZHANG, Bitong WANG, Xiqian YU, Hong LI. Physical characterization techniques and applications in lithium battery failure analysis [J]. Energy Storage Science and Technology, 2025, 14(1): 286-309. |
[9] | Yuanxiu XING, Zhuanwei LIU, Yufeng XING, Wenbo WANG. BDD-DETR: An efficient algorithm for detecting small surface defects on lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 370-379. |
[10] | Shifeng YE, Chaofeng HONG, Xiao QI, Weixiong WU, Zijian TAN, Qi ZHOU, Zhaoyang ZHANG. Lithium-ion batteries surface temperature prediction toward EEMD-GRU-NN method [J]. Energy Storage Science and Technology, 2025, 14(1): 380-387. |
[11] | Ke LI, Shunbing ZHU, Zhige TAO, He WANG. Fire suppression experiment of lithium iron phosphate battery with composite water extinguishing agent [J]. Energy Storage Science and Technology, 2025, 14(1): 140-151. |
[12] | Wenjing ZHANG, Wei XIAO, Yahui YI, Liqin QIAN. Progress on safety modification strategies for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 104-123. |
[13] | Yong LIU, Huaiwen YU, Dapeng LIU, Yong MU, Yingzhou WANG, Xiuyu ZHANG. Remaining useful life prediction of lithium-ion battery based on an ABC-LSTM model [J]. Energy Storage Science and Technology, 2025, 14(1): 331-345. |
[14] | Zheng CHEN, Yue PENG, Jingyuan HU, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. Lithium battery capacity prediction based on short-term charging data and an enhanced whale optimization algorithm [J]. Energy Storage Science and Technology, 2025, 14(1): 319-330. |
[15] | Yingying LIU, Xiaoyuan ZHANG, Mengnan LIU, junzhang SUN, Yan ZHANG. State of health interval estimation for lithium battery via Gaussian process regression with adaptive optimal combination Kernel function [J]. Energy Storage Science and Technology, 2025, 14(1): 346-357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||