Energy Storage Science and Technology
Tuo Deng(), Haiping Zhou(
), Yu Liu, Chang Liu, Zikai Li, Mengqiang Wu
Received:
2025-02-22
Revised:
2025-03-19
Contact:
Haiping Zhou
E-mail:1281471718@qq.com;haipzhou@uestc.edu.cn
CLC Number:
Tuo Deng, Haiping Zhou, Yu Liu, Chang Liu, Zikai Li, Mengqiang Wu. Research progress in preparation of silicon-carbon anode by chemical vapor deposition[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0147.
Fig.3
(a) SEM images of nano silicon/graphite composite electrodes; (b) Cyclic behavior of composite electrode containing 20% nano silicon in EC:DMC (1:1), 1M LiPF6,2% VC; (c) Hybrid manufacturing processes for SGC; (d) Reversible discharge capacity and cycle diagram of PG, SG, SGC, 9 wt%-SGC and B-Si/G for 100 cycles at 0.5 C; (e) Increased rate capacity of SGC from 0.2 C to 5 C compared to PG, SG and B-Si/G; (f) Schematic illustration of the synthesis process of the p-SGC composites; (g) Cycling performance of NG, PG, n-SGC, p’-SGC, p-SGC and p-SGC-25wt% electrodes at 0.2 C"
Fig.4
(a) A schematic of the silicon/carbon nanotube hybrid nanostructure prepared by growing an initial vertically aligned carbon nanotube using a liquid injection CVD, followed by the subsequent deposition of silicon; (b) Discharge/charge capacity and coulomb efficiency maps for 25 cycles; (c) Schematic diagram of fabrication of a silicon nanowire array on a carbon nanotube (SiNW-CNT) array on a collector (stainless steel substrate); (d) The area capacities of Si NW-CNT and Si NWs as working electrodes were compared at 0.05 C (210 mA g-1) in the first cycle and 0.5 C (2100 mA g-1) in the remaining cycles at a constant current between 0.02 and 1.5 V; (e)Si/CNTs manufacturing process diagram; (f) Cycle performance of soft pack batteries at 0.5 C (Si/CNTsS/ Graphite vs NCA and graphite vs LCO); (g) A schematic diagram for the synthesis of GC@Si-C microspheres; (h) long cycling performance at 0.5 A g-1; (i) 1 C cycling performance of the GC@Si-2/G||NCM811 full cell"
Fig.5
(a) Schematic diagram of the synthesis method of ACSC composites; (b) Cyclic performance of ACS0.48C (1 C=1700 mAh g-1); (c) Silicon loading behavior determined by the surface morphology and pore structure of the carbon carrier; (d) Schematic diagram of HC-0.8@Si@C composite material; (e) rate performance of HC-1@Si@C、HC-0.8@Si@C和HC-0.6@Si@C (1 C = 1500 mAh g - 1); (f) Cycle performance at 0.2 C"
Fig.6
(a) Schematic diagram of the CVD device, where a) is an automatic flow controller; b) and c) are manual flow controllers; d) and e) are digital flowmeters; f) and g) are stainless steel source bottles; h) the reaction tube; i) The tubular insert is aligned with the hot area of the furnace; j) for the furnace; k) oil bubbler; (b) Experimental setup of silicon CVD on carbon fiber substrate in microwave plasma CVD reactor; (c) Schematic diagram of the formation of silicon nanocomposite particles assembled from the bottom up; (d) The relationship between the reversible delithiation capacity and coulomb efficiency of the C-Si particle electrode and the number of cycles compared with the theoretical capacity of graphite; (e) Structural diagram of C/SiNW/GM composites; (f) Long cycle and rate performance of C/SiNW/GM"
Fig.7
(a) Schematic diagram of LPCVD and PECVD processes; (b) The full battery of NCA vs PECVD-Si-SWCNT cycles at 40% DOD, and the charge and discharge ratios are C/2 and 2C/3, respectively; (c) Simulation of the behaviour of silicon growth inhibitors; (d) 110 Ah prismatic battery using C (5)Si-G/Gra/NCM811; (e)A: Schematic diagram of the decomposition of silane into nanoporous carbon particles by the CVD process; B: Diagram of a tube furnace with toner and silane flowing from right to left"
1 | Stadie N P, Wang S T, Kraychyk K V, et al. Zeolite-Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries[J]. Acs Nano, 2017, 11(2): 1911-1919. |
2 | Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energ Environ Sci, 2012, 5(7): 7854-7863. |
3 | Sharma R A, Seefurth R N. Thermodynamic Properties of the Lithium‐Silicon System[J]. J Electrochem Soc, 1976, 123(12): 1763-1768. |
4 | Tao W, Wang P, You Y, et al. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries[J]. Nano Res, 2019, 12(8): 1739-1749. |
5 | Choi S, Kwon T W, Coskun A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357(6348): 279-283. |
6 | Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. |
7 | Wang C, Wen J C, Luo F, et al. Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation[J]. Journal of Materials Chemistry A, 2019, 7(25): 15113-15122. |
8 | Pan H, Wang L, Shi Y, et al. A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure[J]. Nature Communications, 2024, 15(1): 2263-2275. |
9 | Kang W, Zhang Q, Jia Y, et al. Enhancing the cycling stability of commercial silicon nanoparticles by carbon coating and thin layered single-walled carbon nanotube webbing[J]. Journal of Power Sources, 2024, 602: 234338. |
10 | 梁晓杜, 丁玉峰. 锂离子电池用硅基材料的研究进展[J]. 船电技术, 2024, 44(12): 87-96. |
Liang X D, Ding Y F. Research progress of silicon-based materials for lithium ion batteries[J]. Marine electric technology, 2024, 44(12): 87-96. | |
11 | 王娟, 张香兰. 锂离子电池硅碳负极材料的应用研究进展[J]. 化学工业与工程, 2024, 41(6): 76-90. |
Wang J, Zhang X L. Research progress in the application of silicon carbon anode materials for lithium ion batteries[J]. Chemical Industry and Engineering, 2024, 41(6): 76-90. | |
12 | Liu X H, Zhong L, Huang S, et al. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation[J]. Acs Nano, 2012, 6(2): 1522-1531. |
13 | Ko M, Chae S, Jeong S, et al. Elastic -Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries[J]. Acs Nano, 2014, 8(8): 8591-8599. |
14 | An Y L, Tian Y, Zhang Y C, et al. Two-Dimensional Silicon/Carbon from Commercial Alloy and CO for Lithium Storage and Flexible TiCT MXene-Based Lithium-Metal Batteries[J]. Acs Nano, 2020, 14(12): 17574-17588. |
15 | Li Y Z, Yan K, Lee H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy, 2016, 1(2): 1-9. |
16 | Zhang Z D, Zhou H P, Feng T T, et al. A plasma strategy for high-quality Si/C composite anode: From tailoring the current collector to preparing the active materials[J]. Electrochimica Acta, 2020, 347: 136222-136231. |
17 | Zhang Z D, Zhou H P, Xue W D, et al. Nitrogen-plasma doping of carbon film for a high-quality layered Si/C composite anode[J]. Journal of Colloid and Interface Science, 2022, 605: 463-471. |
18 | Li X H, Wu M Q, Feng T T, et al. Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries[J]. Rsc Adv, 2017, 7(76): 48286-48293. |
19 | Qin J G, Wu M Q, Feng T T, et al. High rate capability and long cycling life of graphene-coated silicon composite anodes for lithium ion batteries[J]. Electrochimica Acta, 2017, 256: 259-266. |
20 | Wang R, Cao J W, Xu C Y, et al. Low-temperature electrolytes based on linear carboxylic ester co-solvents for SiO/graphite composite anodes[J]. Rsc Adv, 2023, 13(20): 13365-13373. |
21 | Wang W, Kumta P N. Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes[J]. Acs Nano, 2010, 4(4): 2233-2241. |
22 | Tao H, Xiong L, Zhu S, et al. Porous Si/C/reduced graphene oxide microspheres by spray drying as anode for Li-ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 797: 16-22. |
23 | Zhang J Q, Chen Y F, Chen X Q, et al. Preparation of graphene-like carbon attached porous silicon anode by magnesiothermic and nickel-catalyzed reduction reactions[J]. Ionics, 2020, 26(12): 5941-5950. |
24 | Cabello M, Gucciardi E, Herrán A, et al. Towards a High-Power Si@graphite Anode for Lithium Ion Batteries through a Wet Ball Milling Process[J]. Molecules, 2020, 25(11): 2494-2508. |
25 | Wan W W, Mai Y, Guo D, et al. A novel sol-gel process to encapsulate micron silicon with a uniformly Ni-doped graphite carbon layer by coupling for use in lithium ion batteries[J]. Synthetic Met, 2021, 274: 116717-116725. |
26 | Ge M Y, Lu Y H, Ercius P, et al. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon[J]. Nano Letters, 2014, 14(1): 261-268. |
27 | Cho G B, Choi S Y, Noh J P, et al. Dependence of Milling Time on Electrochemical Properties of Nano Si Electrodes Prepared by Ball-Milling[J]. J Nanosci Nanotechno, 2011, 11(7): 6262-6265. |
28 | Li Z J, Du M J, Guo X, et al. Research progress of SiOx-based anode materials for lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 473: 145294-145317. |
29 | Wu J X, Dong Q W, Zhang Q, et al. Fundamental Understanding of the Low Initial Coulombic Efficiency in SiO Anode for Lithium-Ion Batteries: Mechanisms and Solutions[J]. Advanced Materials, 2024, 36(33): 2405751-2405762. |
30 | Zhou H P, Yang B, Zhang Z, et al. Fastly PECVD-Grown vertical carbon nanosheets for a composite SiOx-C anode material[J]. Appl Surf Sci, 2022, 605: 154627-154637. |
31 | Zhou H, Zhou H P, Yang B, et al. Carbon nano-onions/tubes catalyzed by Ni nanoparticles on SiOx for superior lithium storage[J]. Appl Surf Sci, 2023, 640: 158355-158364. |
32 | Zhou H, Yang B, Zhou H P, et al. Carbon Shells and Carbon Nanotubes Jointly Modified SiO x Anodes for Superior Lithium Storage[J]. ACS Applied Energy Materials, 2024, 7(22): 10307-10316. |
33 | Yue H C, Zhang S, Feng T T, et al. Understanding of the Mechanism Enables Controllable Chemical Prelithiation of Anode Materials for Lithium-Ion Batteries[J]. Acs Applied Materials & Interfaces, 2021, 13(45): 53996-54004. |
34 | Li H D, Li H Y, Lai Y Z, et al. Revisiting the Preparation Progress of Nano-Structured Si Anodes toward Industrial Application from the Perspective of Cost and Scalability[J]. Advanced Energy Materials, 2022, 12(7): 2102181-2102206. |
35 | 涂志强, 侯果林, 林伟国, 等. 锂离子电池硅碳负极材料应用前景光明[J]. 中国石化, 2024, (04): 42-45. |
Tu Z Q, Hou G L, Lin W G, et al. The application prospect of silicon carbon anode materials for lithium ion batteries is bright[J]. Sinopec, 2024, (04): 42-45. | |
36 | 蒋运才, 曹昌蝶, 刘岚君, 等. 化学气相沉积法制备二维材料研究进展[J]. 化工新型材料, 2021, 49(11): 59-62. |
Jiang Y C, Cao L D, Liu L J, et al. Research progress in the preparation of two-dimensional materials by chemical vapor deposition[J]. New chemical materials, 2021, 49(11): 59-62. | |
37 | Zhang T, Fu L. Controllable Chemical Vapor Deposition Growth of Two-Dimensional Heterostructures[J]. Chem-Us, 2018, 4(4): 671-689. |
38 | Liu X, Cao L Z, Guo Z, et al. A Review of Perovskite Photovoltaic Materials' Synthesis and Applications via Chemical Vapor Deposition Method[J]. Materials, 2019, 12(20): 3304-3321. |
39 | Wilson A M, Dahn J R. Lithium Insertion in Carbons Containing Nanodispersed Silicon[J]. J Electrochem Soc, 1995, 142(2): 326-332. |
40 | Liu B, Huang P, Xie Z Y, et al. Large-Scale Production of a Silicon Nanowire/Graphite Composites Anode via the CVD Method for High-Performance Lithium-Ion Batteries[J]. Energ Fuel, 2021, 35(3): 2758-2765. |
41 | Zhang X, Hayashida R, Tanaka M, et al. Synthesis of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery[J]. Powder Technology, 2020, 371: 26-36. |
42 | Park S W, Ha J H, Cho B W, et al. Designing of high capacity Si nanosheets anode electrodes for lithium batteries[J]. Surface and Coatings Technology, 2021, 421: 127358-127368. |
43 | Qi C, Li S, Yang Z, et al. Suitable thickness of carbon coating layers for silicon anode[J]. Carbon, 2022, 186: 530-538. |
44 | Han J, Tang X N, Ge S F, et al. Si/C particles on graphene sheet as stable anode for lithium-ion batteries[J]. Journal of Materials Science & Technology, 2021, 80: 259-265. |
45 | Su H P, Li X R, Liu C W, et al. Scalable synthesis of micrometer-sized porous silicon/carbon composites for high-stability lithium-ion battery anodes[J]. Chemical Engineering Journal, 2023, 451: 138394-138401. |
46 | Łach Ł, Svyetlichnyy D. Recent Progress in Heat and Mass Transfer Modeling for Chemical Vapor Deposition Processes[J]. Energies, 2024, 17(13): 3267-3327. |
47 | Chae S, Choi S H, Kim N, et al. Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries[J]. Angew Chem Int Edit, 2020, 59(1): 110-135. |
48 | Li P, Kim H, Myung S T, et al. Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries[J]. Energy Storage Mater, 2021, 35: 550-576. |
49 | Wetjen M, Pritzl D, Jung R, et al. Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries[J]. J Electrochem Soc, 2017, 164(12): A2840-A2852. |
50 | Yan Z L, Yi S, Li X D, et al. A scalable silicon/graphite anode with high silicon content for high-energy lithium-ion batteries[J]. Mater Today Energy, 2023, 31: 101225-101235. |
51 | Zhang Y, Jiang Y, Li Y, et al. Preparation of nanographite sheets supported Si nanoparticles by in situ reduction of fumed SiO2 with magnesium for lithium ion battery[J]. Journal of Power Sources, 2015, 281: 425-431. |
52 | Holzapfel M, Buqa H, Scheifele W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion[J]. Chem Commun, 2005, (12): 1566-1568. |
53 | Ko M, Chae S, Ma J, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy, 2016, 1(9): 16113-16121. |
54 | Zhu S J, Lin Y F, Yan Z L, et al. Novel design of uniform Si@graphite@C composite as high-performance Li-ion battery anodes[J]. Electrochimica Acta, 2021, 377: 138092-138100. |
55 | Wang F L, Chen G, Zhang N, et al. Engineering of carbon and other protective coating layers for stabilizing silicon anode materials[J]. Carbon Energy, 2019, 1(2): 219-245. |
56 | Li P, Hwang J Y, Sun Y K. Nano/Microstructured Silicon-Graphite Composite Anode for High-Energy-Density Li-Ion Battery[J]. Acs Nano, 2019, 13(2): 2624-2633. |
57 | Nazarian-Samani M, Nazarian-Samani M, Haghighat-Shishavan S, et al. Efficient stress alleviation and interface regulation in Cu4SiP8-CNT hybrid for ultra-durable Li and Na storage[J]. Nano Energy, 2021, 86: 106134-106146. |
58 | Schulze M C, Belson R M, Kraynak L A, et al. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries[J]. Energy Storage Mater, 2020, 25: 572-584. |
59 | Nguyen T, Su Y S. A self-assembled carbon nanotube/silicon composite battery anode stabilized with chemically reduced graphene oxide sheets[J]. Mater Design, 2024, 240: 112861-112869. |
60 | Wang S Z, Liao J X, Wu M Q, et al. High Rate and Long Cycle Life of a CNT/rGO/Si Nanoparticle Composite Anode for Lithium-Ion Batteries[J]. Part Part Syst Char, 2017, 34(10): 1700141-1700150. |
61 | Li X, Cho J H, Li N, et al. Carbon Nanotube‐Enhanced Growth of Silicon Nanowires as an Anode for High‐Performance Lithium‐Ion Batteries[J]. Advanced Energy Materials, 2011, 2(1): 87-93. |
62 | Zhao H, Tu N, Zhang W, et al. Novel synthesis of Silicon/Carbon nanotubes microspheres as anode additives through chemical vapor deposition in fluidized bed reactors[J]. Scripta Materialia, 2021, 192: 49-54. |
63 | Liu C, Zhou H, Zhou H, et al. Highly Si Loading on Three-Dimensional Carbon Skeleton Via Cvd Method for a Stable Si-C Composite Anode[J]. Journal of Energy Sources, 2025, (116): 116083-116093. |
64 | Li K, Chen W, Yang H, et al. Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials[J]. Bioresource Technology, 2019, 280: 260-268. |
65 | Xu X T, Mu X, Huang T, et al. Robust silicon/carbon composite anode materials with high tap density and excellent cycling performance for lithium-ion batteries[J]. Journal of Power Sources, 2024, 614: 234992-235002. |
66 | Kim K N, Kang S C, Seo S W, et al. Effects of macrostructure of carbon support in preparation of C/Six/C anode materials for lithium-ion batteries via silane decomposition[J]. Carbon Letters, 2024, 34(9): 2305-2316. |
67 | Schäufele R S, Vazquez-Pufleau M, Pendashteh A, et al. Controlling reaction paths for ultra-fast growth of inorganic nanowires floating in the gas phase[J]. Nanoscale, 2021, 14(1): 55-64. |
68 | Xiao Y M, Yi S, Yan Z L, et al. Benchmarking the Match of Porous Carbon Substrate Pore Volume on Silicon Anode Materials for Lithium‐Ion Batteries[J]. Small, 2024, 20(45): 2404440-2404452. |
69 | Hu M F, Wu H Z, Zhang G J. High-performance silicon/graphite anode prepared by CVD using SiCl4 as precursor for Li-ion batteries[J]. Chem Phys Lett, 2023, 833: 140917-140925. |
70 | Huang P, Liu B, Zhang J L, et al. Silicon/carbon composites based on natural microcrystalline graphite as anode for lithium-ion batteries[J]. Ionics, 2021, 27(5): 1957-1966. |
71 | Wolf H, Pajkic Z, Gerdes T, et al. Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition[J]. Journal of Power Sources, 2009, 190(1): 157-161. |
72 | Chen Z D, Soltani A, Chen Y G, et al. Emerging Organic Surface Chemistry for Si Anodes in Lithium-Ion Batteries: Advances, Prospects, and Beyond[J]. Advanced Energy Materials, 2022, 12(32): 2200924-2200955. |
73 | Wilson A M, Way B M, Dahn J R, et al. Nanodispersed silicon in pregraphitic carbons[J]. Journal of Applied Physics, 1995, 77(6): 2363-2369. |
74 | Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials, 2010, 9(4): 353-358. |
75 | Forney M W, DiLeo R A, Raisanen A, et al. High performance silicon free-standing anodes fabricated by low-pressure and plasma-enhanced chemical vapor deposition onto carbon nanotube electrodes[J]. Journal of Power Sources, 2013, 228: 270-280. |
76 | Sung J, Kim N, Ma J, et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack[J]. Nature Energy, 2021, 6(12): 1164-1175. |
77 | Han Z N, Wild J F, Chen J J, et al. Modeling Silane Deposition in Nanoporous Carbon for High-Capacity Si/C Composite Anodes[J]. Energy Material Advances, 2024, 5: 111-119. |
78 | Zhan X, Li M, Li S, et al. Challenges and opportunities towards silicon-based all-solid-state batteries[J]. Energy Storage Mater, 2023, 61: 102875-102904. |
79 | Huo H Y, Janek J. Silicon as Emerging Anode in Solid-State Batteries[J]. Acs Energy Lett, 2022, 7(11): 4005-4016. |
80 | Li J C, Dozier A K, Li Y C, et al. Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes[J]. J Electrochem Soc, 2011, 158(6): A689-A694. |
81 | Zhou M, Li X L, Wang B, et al. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies[J]. Nano Letters, 2015, 15(9): 6222-6228. |
82 | Ferraresi G, El Kazzi M, Czornomaz L, et al. Electrochemical Performance of All-Solid-State Li-Ion Batteries Based on Garnet Electrolyte Using Silicon as a Model Electrode[J]. Acs Energy Lett, 2018, 3(4): 1006-1012. |
83 | Chen C, Li Q, Li Y Q, et al. Sustainable Interfaces between Si Anodes and Garnet Electrolytes for Room-Temperature Solid-State Batteries[J]. Acs Applied Materials & Interfaces, 2018, 10(2): 2185-2190. |
84 | Ping W, Yang C, Bao Y, et al. A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics[J]. Energy Storage Mater, 2019, 21: 246-252. |
[1] | Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. |
[2] | Jianru ZHANG, Qiyu WANG, Yinghui JI, Xin GAO, Xiqian YU, Hong LI. Application of Auger electron spectroscopy in the analysis of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 755-769. |
[3] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[4] | Jianxuan LI, Chen LIN, Zhongkai ZHOU. State of health estimation based on subtraction average based optimizer and bidirectional long and short term memory networks for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 358-369. |
[5] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[6] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. |
[7] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[8] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[9] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[10] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[11] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[12] | Zeheng LI, Lei XU, Yuxing YAO, Chong YAN, Ximin ZHAI, Xuechun HAO, Aibing CHEN, Jiaqi HUANG, Xiaofei BIE, Huanli SUN, Lizhen FAN, Qiang ZHANG. A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2192-2205. |
[13] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[14] | Chen LI, Huilin ZHANG, Jianping ZHANG. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization [J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. |
[15] | Chenwei LI, Shiguo XU, Haifeng YU, Songmin YU, Hao JIANG. Synthesis of Mg-doped LiFe0.5Mn0.5PO4/C cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||